
Optimizing Boggle boards
An evaluation of parallelizable techniques

Ankur Dave
ankurdave@gmail.com

Candidate #0844-028

Word Count: 3611

January 22, 2009



Optimizing Boggle boards: An evaluation of parallelizable techniques i

Abstract

This paper’s objective is to find efficient, parallelizable techniques of solving global optimization
problems. To do this, it uses the specific problem of optimizing the score of a Boggle board.

Global optimization problems deal with maximizing or minimizing a given function. This has
many practical applications, including maximizing profit or performance, or minimizing raw
materials or cost.

Parallelization is splitting up an algorithm across many different processors in a way that
allows many pieces of work to run simultaneously. As parallel hardware increases in popularity and
decreases in cost, algorithms should be parallelizable to maximize efficiency.

Boggle is a board game in which lettered cubes are shaken onto a 4-by-4 grid. The objective is to
find words spelled by paths through the grid. The function to maximize is the sum of the scores of
all possible words in the board.

In this paper, the performance of two algorithms for global optimization are investigated: hill
climbing and genetic algorithms. Genetic algorithms, which model evolution to find the fittest
solutions, are found to be more efficient because they are non-greedy. In addition, a modified genetic
algorithm called the coarse-grained distributed genetic algorithm (DGA) is investigated. This
algorithm can take advantage of multiple computers, running several semi-independent copies of
the algorithm in parallel to provide extra genetic diversity and better performance. The success of
the coarse-grained DGA shows that global optimization problems can benefit significantly from
parallelization.

Investigating these genetic algorithms revealed several modifications that are beneficial to
global optimization. These modifications solve the problem of premature convergence (a loss of
genetic diversity). Several techniques to solve this problem are investigated, notably incest
prevention and migration control, revealing a very significant performance increase.

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques ii

Contents

1 Introduction 1

2 Boggle board data format 2

3 Techniques for optimizing Boggle boards 2
3.1 Testing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Hill climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3.1 Single-population genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3.2 Coarse-grained distributed genetic algorithm . . . . . . . . . . . . . . . . . . . . . 6

4 Conclusion 7

References 7

A Appendix 9
A.1 Board.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A.2 BoardTester.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.3 ByBoardScore.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.4 ByStringLength.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.5 Dictionary.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.6 DictionaryTester.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.7 GenerationEmptyException.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.8 GeneticClient.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.9 GeneticClientTester.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.10 GeneticClientThread.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.11 HillClimber.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.12 Population.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.13 Server.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.14 ServerTester.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.15 ServerThread.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.16 Util.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 1

1 Introduction

In recent years, parallel computing has seen an enormous rise in interest. While
supercomputers have used multiple processors for years, the rise of multi-core processors in desktop
computers is a fairly recent phenomenon [1]. In addition, Google-style cluster computing,
harnessing thousands of commodity computers to do the work of a few high-end servers at a much
lower cost, is rising in popularity [2]. In order to take advantage of these new developments,
computer scientists who need to solve problems must find ways to do so that lend themselves to
parallelization—being split up across many different processors in a way that allows every piece of
work to run simultaneously.

Global optimization problems are one class of problems in computer science that can benefit
from the rise of parallel computing. Global optimization problems deal with finding the solution
among a set of all possible solutions that maximizes a given function [3]. The set of all possible
solutions is called the search space, and the function to evaluate each possible solution is called the
objective function [4]. Global optimization problems have many practical applications; any problem
that benefits from the maximization or minimization of a value—for example, raw materials used or
cost—uses a optimization algorithm.

Such applications of global optimization problems are usually limited by the amount of time
taken to find the optimal solution to the problem [4], so they must be interrupted after a specified
time has elapsed and the best solution so far must be used. Therefore, faster techniques for solving
global optimization problems would benefit users of such problems, because they would allow better
solutions to be found in the same amount of time. If the algorithm for solving a global optimization
problem were able to take advantage of parallelization, its speed would be greatly improved.

The objective of this paper is to find efficient, parallelizable techniques of solving global
optimization problems. In order to test such techniques, a specific global optimization problem is
used: the optimization of the score of a Boggle board.

Boggle is a board game published by Hasbro in which 16 cubes, each having a letter printed
onto every side, are shaken onto a 4-by-4 grid. The objective of the game is to find words that are
spelled out by paths through the grid. These paths must take only horizontally, vertically, or
diagonally adjacent steps, and they must not use a cube more than once for the same word. Longer
words score more points; the detailed scoring rules are given in Table 1.

Every Boggle board has a score that is calculated by finding all the possible words in the board
and summing the scores of each of the words.

In order to frame the Boggle board problem as a global optimization problem, it is necessary to
specify the key parameters of global optimization problems: the format of possible solutions, the

Word length Points
≤ 3 0

4 1
5 2
6 3
7 5

≥ 8 11

Table 1: Boggle scoring rules

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 2

search space of possible solutions, and the objective function with which to measure solutions. In
the case of the Boggle board problem, any Boggle board is a possible solution. The search space is
therefore the set of all possible Boggle boards, and the objective function—the function that we wish
to maximize—is the score of a Boggle board.

In order to understand why optimizing the score of a Boggle board is not a trivial problem, it is
helpful to look at the search space. A Boggle board has 16 cubes. For simplicity of implementation
each cube is represented by a random letter from the alphabet rather than one of the six letters on
the actual cube in that position. Therefore, each letter can be one of the 26 letters in the English
alphabet. This means that there are 2616 (about 44 sextillion, or about 275) possible Boggle boards.
If each board takes 0.01 second to score, then it would take over 13 trillion years to score all the
boards in order to find the highest-scoring one. Clearly, any algorithm to optimize the score of a
Boggle board must take a more intelligent approach to the problem than simply scoring every single
board. Section 3 discusses the pursuit of such a technique.

An efficient and parallelizable technique for optimizing the score of a Boggle board would yield
insights that would allow many other global optimization problems more efficiently to take
advantage of the increasingly common and powerful resource of parallel computing.

2 Boggle board data format

In order to optimize the score of Boggle boards, the first step is to define the storage format for
any Boggle board. These boards can be represented most clearly as objects, so throughout this
paper, Java, an object-oriented language, is used. The Boggle board is stored as a Board object (A.1)
that has a two-dimensional array of Letters that stores the information for each letter on the
board, a value for the score of the board, a value for the side length of the board (4 in the official
version of Boggle), a list of words contained in the board, and a reference to a dictionary.

The score of the board is calculated by finding the sum of the scores of all the possible words in
the board (A.1, page 11, line 190). To find all possible words in the board, a depth-first search
algorithm is used. This algorithm starts at the first letter on the board and recursively explores as
far as possible along one path, stopping and backtracking when there are no letters left. Because
using the same letter more than once in the same word is not allowed, each letter has a flag
indicating whether or not it has been already used in the current word; this flag is set before
traversing through a letter and lowered after finishing traversal through the letter. To improve
performance, the dictionary used to check for valid words is stored as a trie—a tree in which each
node is a letter and words in the dictionary are represented by paths through the tree (A.5). This
provides the benefit that dictionary lookups take constant time instead of logarithmic time, as they
would with a flat dictionary. Pruning of the search tree (skipping traversal of branches that clearly
will not contain any valid words) is also done using the trie to see if the current path begins any
valid words (A.5, page 16, line 28).

3 Techniques for optimizing Boggle boards

Optimization algorithms fall into two classes: greedy and non-greedy. This section investigates
stochastic hill climbing, a greedy algorithm, and genetic algorithms, a greedy algorithm. After
finding that non-greedy algorithms are a better choice for optimization problems, it explores
whether distributed algorithms provide an improvement over non-distributed algorithms for

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 3

optimization.

3.1 Testing method

Each algorithm is run through 100 trials. In each trial, the algorithm is allowed to run until one
of the following conditions is met:

• the Boggle board score reaches 3500, or

• 1000 seconds elapse.

Non-distributed algorithms (those that run on only one computer) are tested on a Dell Precision
M90 with the following specifications:

CPU Intel Core 2 Duo T7200, 2.00 GHz

RAM 2.00 GB

OS Ubuntu Linux 8.10

3.2 Hill climbing

A simple starting point for the task of finding high-scoring Boggle boards is hill climbing, an
algorithm that starts with a random board and makes random, small changes, called mutation. If a
change improves the board’s score, it keeps the change; otherwise, it tries a different change. Hill
climbing for Boggle is implemented in A.11.

Hill climbing is a greedy algorithm, which means it only makes changes that improve the score
of the Boggle board. This can cause it to get stuck in a local optimum. If there is a high-scoring
Boggle board with no higher-scoring boards that are a small change from the current board, then
the hill climbing algorithm will not be able to improve on the current board.

The implementation of hill climbing to optimize Boggle boards can be found in A.11. This
implementation was run according to the standard testing method in 3.1. To investigate the impact
of the fact that hill climbing is a greedy algorithm, it is necessary to check which halting condition
has happened first—the score has reached 3500, or 1000 seconds have elapsed. If the first halting
condition is satisfied first, it means that the algorithm has performed well, and the time taken to
reach the score of 3500 provides a means to compare hill climbing with other algorithms. If the
second halting condition is satisfied first, however, it means that the algorithm has likely reached a
local optimum—a consequence of the fact that hill climbing is a greedy algorithm—and will not
provide any more improvement in the Boggle board score.

The low percentage of trials that reached a score of 3500—the success rate of the algorithm—is
likely caused by the algorithm reaching local optima and ceasing to improve the score. This
mediocre overall performance because of local optima is due to the fact that hill climbing is a greedy
algorithm. To overcome it, it is necessary to choose an algorithm that is non-greedy—willing to
follow paths that do not, in the short term, improve the Boggle board’s score. This will allow the
algorithm to escape local optima in search of the global optimum. One such algorithm is the genetic
algorithm.

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 4

3.3 Genetic algorithm

A different algorithm for optimizing the score of a Boggle board is the genetic algorithm. The
genetic algorithm is a non-greedy algorithm, so it is not restricted to following paths that always
improve the Boggle board score. It is able to take “risks” in order to escape local optima.

Genetic algorithms attempt to solve optimization problems by modeling evolution. They
simulating a population of candidate solutions, called chromosomes. The population goes through
multiple generations. In each generation the score, or fitness, of each chromosome is calculated. The
more fit a chromosome, the more likely it is to be selected to reproduce.

After selecting a portion of the population to reproduce, the chromosomes in the population are
paired up and combined using the crossover and mutation operators. The crossover operator takes
parts of each parent chromosome and joins them to form an offspring. The mutation operator adds
an element of randomness to the simulation to help escape local optima. It is helpful when most of
the chromosomes in the population are similar; in this situation, it introduces variety to continue
improving the score. It randomly replaces a part of the offspring chromosome with a random piece
of genetic material.

3.3.1 Single-population genetic algorithm

The basic version of the genetic algorithm works as described above, with no modifications
made to allow it to run on multiple computers or take advantage of multiple cores in a computer.
Beginning with the simple, non-parallelized version reveals whether parallelizing the algorithm
yields significant improvements or not.

The implementation for the single-population genetic algorithm is contained in the Population

class (A.12). This class stores the current population of Boggles, and each time the
Population.evolve method (A.12, page 23, line 53) is called, it advances the population to the next
generation by pairing up parents, creating children using crossover and mutation (A.1, page 13, line
270), and replacing the parent generation with the child generation.

Testing this implementation according to the testing procedures in Section 3.1 resulted in an
average time to completion of 915±10.3 seconds, and a success rate of 10%.

This very low success rate arose mostly because, after the first few generations, the population
was almost completely composed of copies of the same chromosome. When these copies reproduced,
they almost always produced more copies of the same chromosome rather than finding better
chromosomes.

There are several problems with this algorithm that reduce its performance. One problem is
premature convergence, which is a reduction of genetic diversity to the point where the genetic
algorithm is unable to continue exploring the search space for fitter solutions. This occurs when the
population contains only the descendents or the copies of one chromosome, so there is no variety of
genetic material. This problem arises most often when a locally optimum chromosome is created,
and it and its descendents dominate the population and crowd out all other chromosomes. The
population has thus converged on a certain chromosome before the genetic algorithm is able to
explore much of the search space. In the test above, premature convergence was the primary cause
of such a low success rate.

In order to reduce the problem of premature convergence, one technique is incest prevention.
Since premature convergence usually occurs when a locally optimum chromosome multiplies out of
control by reproducing with near-copies of itself, it can be avoided in many cases by prohibiting such

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 5

“incestuous” reproduction. In order to prevent incest, it is necessary to prevent more than one copy
of the same board to exist in a population (A.12, page 23, line 78), as well as increasing the mutation
rate for reproduction between two boards that are excessively similar (A.1, page 13, line 297). The
former will prevent a board from dominating the population with copies of itself, while the latter
will introduce genetic diversity through mutation if the population consists of many similar boards.

Another possible solution for premature convergence is weighted random mating. This
technique aims to increase genetic diversity by giving a wider fitness range of chromosomes a
chance at contributing genetic material to the next generation. Normally, when evolving the next
generation by mating the current generation, the boards are paired up according to score—the
highest-scoring boards is paired up with the second-highest, the next one is paired up with the next
after that, and so on. This has the advantage of ensuring that the boards with the best
characteristics get a chance to merge genetic material and produce an even better board, but
because boards that have similar scores often came from the same genetic background, it
encourages incest and discourages diversity. This may make it more likely for the population to
converge prematurely on a local maximum, resulting in a low success rate. Instead, weighted
random mating pairs boards up in a more diverse fashion. For every pair, it chooses two random
boards from the population, weighted so that the higher a board’s score, the greater chance it has of
being chosen. This approach should allow lower-scoring boards to pair with higher ones, increasing
genetic diversity, while still preferring higher-scoring boards.

Testing the two techniques separately and comparing the results provides a basis for deciding
which, if any, technique is more effective at improving performance. Testing the single-population
algorithm with incest prevention resulted in an average time of 501±9.9 seconds, and a success
rate of 70%. Weighted random mating resulted in an average time of 867±134 seconds, and a
success rate of 14%. Compared to the performance of the simple genetic algorithm, both of these
techniques provided improvements, but comparing the success rates of two techniques shows that
incest prevention is better for solving the problem of premature convergence, because the greater
the success rate, the fewer trials failed early due to premature convergence.

Another problem with the genetic algorithm is the loss of highly fit chromosomes. If, by chance,
an especially fit chromosome is produced in one generation, it is usually difficult for the
chromosome’s children to surpass its fitness in just one generation. However, instead of being given
more chances at creating higher-scoring children, the chromosome dies in one generation and only
its less-fit children remain. In order to give such a high-scoring chromosome the extra chances at
reproduction that it needs, some way of promoting the chromosome to the next generation
unmodified.

One way of doing this is elitist selection. This technique involves copying the highest-scoring
board from one generation directly into the next generation, as well as allowing it to reproduce.

Testing an implementation of elitist selection, combined with the best premature convergence
technique above, incest prevention, resulted in an average time of 368±9.8 seconds, and a success
rate of 78%. Elitist selection improved the average time by a factor of 1.4, demonstrating that it is
an effective solution for the loss of highly fit chromosomes.

Using the best of these techniques, incest prevention and elitist selection, we can proceed from
optimization of the genetic algorithm on a single processor to optimization on multiple parallel
processors.

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 6

3.3.2 Coarse-grained distributed genetic algorithm

After creating and optimizing a single-population genetic algorithm, the next step is to take
advantage of parallelism by modifying the algorithm to work on multiple computers, called
distributed computing. The advantage of using multiple processors instead of one is that evolution
can be performed in parallel and therefore takes less time. In addition, it is cheaper to use many
commodity computers than just one computer with hundreds of processors [2]. One common way of
running the genetic algorithm on multiple computers is called a coarse-grained distributed genetic
algorithm (DGA). In this technique, each computer simulates an independent population, called a
subpopulation, and chromosomes from each subpopulation migrate periodically to other
subpopulations. (The opposite method is the fine-grained DGA, in which each computer is assigned
small tasks like scoring a particular board by the master computer. There is only one population in
total in this technique, as opposed to one per computer in the coarse-grained DGA.)

The coarse-grained DGA has several advantages over other distributed genetic algorithm
variants. It is useful for clusters where network latency is high or bandwidth is low, because it
requires relatively little communication between computers (only the overall command signals and
the migrant chromosomes need to travel over the network). This means every computer can be
working all the time, instead of spending a significant portion of time waiting for another computer
to communicate with it over the network [5]. In addition, using multiple subpopulations instead of
one large population allows the subpopulations to evolve along different evolutionary paths [6].
This increases diversity by making it less likely that the entire genetic algorithm will be dominated
by one gene.

The coarse-grained DGA is implemented using two components—a server and a client. The
server is implemented in Server (A.13). It handles migration, keeps statistics about the
subpopulations, and performs other administrative tasks for all the subpopulations. The client is
implemented in GeneticClient in the glossary. It evolves an individual subpopulation,
communicating with the server to take commands and send and receive migrant chromosomes.

In the unmodified coarse-grained DGA, migration is done every time a subpopulation completes
a generation. Each time this happens, the subpopulation submits its most fit chromosome to the
server for migration, keeping a copy for itself as well. It also accepts an incoming migrant
chromosome from one of the other subpopulations at random.

As with the single-population algorithm, the main problem with this distributed genetic
algorithm is premature convergence, not within a subpopulation but rather between
subpopulations. This problem causes most or all subpopulations to be dominated by the same
genetic materal, losing the advantage of a coarse-grained genetic algorithm—increased diversity
because of multiple subpopulations. The most common methods of solving this problem involve
modifying the way in which chromosomes migrate between subpopulations.

One solution to this problem is a fitness-based migration hierarchy. Unlike the standard,
random method of migration, a fitness-based hierarchy only allows migrant chromosomes to travel
to subpopulations with a higher average fitness than their home subpopulations.

This implementation was tested according to the testing procedures in Section 3.1. The
implementation used the techniques for single-population genetic algorithms found in the previous
section, as well as the fitness-based migration hierarchy. Testing resulted in an average time to
completion of 258±9.9 seconds, and a success rate of 94%. Therefore, moving to a distributed
algorithm and taking advantage of both cores in the same computer, as well as reducing premature
convergence, improved the performance of the algorithm by a factor of 1.4.

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 7

S

EAIE

GNT

OPES

SLRD

Figure 1: Best Boggle board found. Score: 4410

4 Conclusion

By investigating the performance, both in terms of time and success rate, of three global
optimization algorithms—hill climbing, genetic algorithms, and coarse-grained DGAs—this paper
determined that non-greedy algorithms are generally more successful than greedy ones, and that
reimplementing an algorithm to make it distributed provides a significant performance benefit. The
specific algorithms and techniques that were found to be the most effective were coarse-grained
DGAs with incest prevention, elitist selection, and a fitness-based migration hierarchy. Using this
algorithm, a very high-scoring Boggle board was found, given in Figure 1 (one of the longest words
on this board is “predestines,” worth 11 points in Boggle).

However, these findings are somewhat specific to the problem of optimizing Boggle boards. The
testing used to find the highest-performing algorithms attempted to maximize the objective
function of the score of a Boggle board, but this objective function is peculiar because evaluating it
is a relatively time-consuming operation. Broader testing, using a variety of types of objective
functions, is needed to establish the superiority of these algorithms.

In addition, only three types of global optimization algorithms were tested out of the hundreds
that exist. While these three are among the most widely used, investigation of many other
algorithms is necessary to conclude that any particular global optimization algorithm is superior.

References

[1] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel computing
research: A view from Berkeley. Technical report, EECS Department, University of California,
Berkeley, December 2006.

[2] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet: The Google cluster
architecture. IEEE Micro, 23(2):22–28, 2003.

[3] János Pintér. Global optimization. Wolfram MathWorld.
<http://mathworld.wolfram.com/GlobalOptimization.html>.

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 8

[4] Global optimization. Wikipedia.
<http://en.wikipedia.org/w/index.php?title=Global_optimization&oldid=246431368>.

[5] Shisanu Tongchim. Abstract coarse-grained parallel genetic algorithm for solving the
timetable problem.

[6] David Patrick, Peter Green, and Trevor York. A distributed genetic algorithm environment for
UNIX workstation clusters. In Second International Conference On Genetic Algorithms in
Engineering Systems: Innovations and Applications, number 446, pages 69–74. IEE,
September 1997.

[7] Francisco Herrera and Manuel Lozano. Heterogeneous distributed genetic algorithms based
on the crossover operator. In Second International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, number 446, pages 203–208. IEE,
September 1997.

[8] Ben Paechter, Thomas Bäck, Marc Schoenauer, Michele Sebag, A. E. Eiben, J. J. Merelo, and
T. C. Fogarty. A distributed resource evolutionary algorithm machine (DREAM). In
Proceedings of the 2000 Congress on Evolutionary Computation, volume 2, pages 951–958.
IEEE, July 2000.

[9] Weilie Yi, Qizhen Liu, and Yongbao He. Dynamic distributed genetic algorithms. In
Proceedings of the 2000 Congress on Evolutionary Computation, volume 2, pages 1132–1136.
IEEE, July 2000.

[10] Jason Cooper and Chris Hinde. Improving genetic algorithms’ efficiency using intelligent
fitness functions. In Proceedings of the 16th international conference on developments in
applied artificial intelligence, pages 636–643. Springer, 2003.

[11] Thomas Weise. Global optimization algorithms: Theory and application.
<http://www.it-weise.de>, October 2008.

[12] Justin Andrew Boyan. Learning Evaluation Functions for Global Optimization. PhD thesis,
Carnegie Mellon University, August 1998.

[13] David Power, Conor Ryan, and R. Muhammed Atif Azad. Promoting diversity using migration
strategies in distributed genetic algorithms. In The 2005 IEEE Congress on Evolutionary
Computation, volume 2, pages 1831–1838. IEEE, September 2005.

[14] Carlos Fernandes, Rui Tavares, and Agostinho C. Rosa. niGAVaPS — outbreeding in genetic
algorithms. In Proceedings of the 2000 ACM symposium on applied computing, pages 477–482.
ACM, 2000.

[15] K. C. Tan, M. L. Wang, and W. Peng. A P2P genetic algorithm environment for the Internet.
Communications of the ACM, 48(4):113–116, April 2005.

[16] Vladimir I. Litvinenko, J. A. Burgher, Alla A. Tkachuk, and Vajcheslav J. Gnatjuk. The
application of the distributed genetic algorithm to the decision of the packing in containers
problem. In Proceedings of the 2002 IEEE International Conference on Artificial Intelligence
Systems, pages 386–390. IEEE Computer Society, 2002.

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 9

[17] Kojima Kazunori, Matsuo Hiroshi, and Ishigame Maasaki. Asynchronous parallel distributed
GA using elite server. In The 2003 Congress on Evolutionary Computation, volume 4, pages
2603–2610. IEEE, December 2003.

A Appendix

A.1 Board.java

1 package com.ankurdave.boggle;
2 import java.util.Arrays;
3 import java.util.HashSet;
4 public class Board implements Comparable<Board> {
5 class Letter {
6 private char data;
7 private boolean hasBeenHit = false;
8 private int X;
9 private int Y;

10 public Letter(char data, int X, int Y) {
11 this.data = data;
12 this.X = X;
13 this.Y = Y;
14 }
15 @Override public Letter clone() {
16 Letter thisClone = new Letter(data, X, Y);
17 thisClone.setHasBeenHit(hasBeenHit);
18 return thisClone;
19 }
20 @Override public boolean equals(Object o) {
21 Letter that = (Letter) o;
22 if (this.getData() == that.getData() && this.getX() == that.getX()
23 && this.getY() == that.getY()) {
24 return true;
25 } else {
26 return false;
27 }
28 }
29 public char getData() {
30 return data;
31 }
32 public boolean getHasBeenHit() {
33 return hasBeenHit;
34 }
35 public int getX() {
36 return X;
37 }
38 public int getY() {
39 return Y;
40 }
41 public void setHasBeenHit(boolean hasBeenHit) {
42 this.hasBeenHit = hasBeenHit;
43 }
44 @Override public String toString() {
45 return "Letter[" + "data=" + getData() + "; " + "X=" + getX()
46 + "; " + "Y=" + getY() + "; " + "hasBeenHit="
47 + getHasBeenHit() + "]";
48 }
49 public void traverse(String soFar) {
50 // don’t traverse if this has already been used
51 if (hasBeenHit) { return; }
52 soFar += data;
53 // don’t traverse deeper if it doesn’t begin a word so far
54 if (!dict.beginsWord(soFar.toLowerCase())) { return; }
55 // only add it to the found words if it’s longer than 2 chars and is
56 // a word

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 10

57 if (soFar.length() > 2 && dict.isWord(soFar.toLowerCase())) {
58 words.add(soFar);
59 }
60 // mark this Letter as already used so adjacent Letters don’t
61 // traverse back onto it
62 hasBeenHit = true;
63 // traverse each Letter around this one recursively
64 // Letter above
65 if (Y - 1 >= 0 && Y - 1 < sideLength) {
66 board[X][Y - 1].traverse(soFar);
67 }
68 // Letter below
69 if (Y + 1 >= 0 && Y + 1 < sideLength) {
70 board[X][Y + 1].traverse(soFar);
71 }
72 // Letter right
73 if (X + 1 >= 0 && X + 1 < sideLength) {
74 board[X + 1][Y].traverse(soFar);
75 }
76 // Letter left
77 if (X - 1 >= 0 && X - 1 < sideLength) {
78 board[X - 1][Y].traverse(soFar);
79 }
80 // Letter up−left
81 if (X - 1 >= 0 && X - 1 < sideLength && Y - 1 >= 0
82 && Y - 1 < sideLength) {
83 board[X - 1][Y - 1].traverse(soFar);
84 }
85 // Letter up−right
86 if (X + 1 >= 0 && X + 1 < sideLength && Y - 1 >= 0
87 && Y - 1 < sideLength) {
88 board[X + 1][Y - 1].traverse(soFar);
89 }
90 // Letter down−left
91 if (X - 1 >= 0 && X - 1 < sideLength && Y + 1 >= 0
92 && Y + 1 < sideLength) {
93 board[X - 1][Y + 1].traverse(soFar);
94 }
95 // Letter down−right
96 if (X + 1 >= 0 && X + 1 < sideLength && Y + 1 >= 0
97 && Y + 1 < sideLength) {
98 board[X + 1][Y + 1].traverse(soFar);
99 }

100 // now that this word attempt has finished, it’s OK for other
101 // letters to traverse onto this one
102 hasBeenHit = false;
103 }
104 }
105 private int age = 1;
106 private Letter[][] board;
107 private Dictionary dict;
108 private char[][] grid;
109 private int score;
110 private int sideLength;
111 private HashSet<String> words = new HashSet<String>();
112 public Board(char[][] grid, Dictionary dict) {
113 assert grid.length == grid[0].length;
114 assert grid.length > 0;
115 assert dict != null;
116 sideLength = grid.length;
117 this.grid = grid;
118 this.dict = dict;
119 // make board from grid
120 board = new Letter[sideLength][sideLength];
121 for (int i = 0; i < sideLength; i++) {
122 for (int j = 0; j < sideLength; j++) {
123 board[i][j] = new Letter(grid[i][j], i, j);
124 }

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 11

125 }
126 }
127 public Board(char[][] grid, String path) {
128 assert grid.length == grid[0].length;
129 assert grid.length > 0;
130 sideLength = grid.length;
131 this.grid = grid;
132 dict = new Dictionary();
133 dict.buildDictionary(path);
134 // make board from grid
135 board = new Letter[sideLength][sideLength];
136 for (int i = 0; i < sideLength; i++) {
137 for (int j = 0; j < sideLength; j++) {
138 board[i][j] = new Letter(grid[i][j], i, j);
139 }
140 }
141 }
142 public Board(String s, int sideLength, Dictionary dict) {
143 // TODO: error handling
144 String[] parts = s.split(" ", 2);
145 String gridS = parts[0];
146 int score = Integer.parseInt(parts[1]);
147 char[][] grid = new char[sideLength][sideLength];
148 for (int i = 0; i < sideLength; i++) {
149 for (int j = 0; j < sideLength; j++) {
150 grid[i][j] = gridS.charAt(i * sideLength + j);
151 }
152 }
153 assert grid.length == grid[0].length;
154 assert grid.length > 0;
155 this.score = score;
156 this.grid = grid;
157 this.sideLength = sideLength;
158 this.dict = dict;
159 // make board from grid
160 board = new Letter[sideLength][sideLength];
161 for (int i = 0; i < sideLength; i++) {
162 for (int j = 0; j < sideLength; j++) {
163 board[i][j] = new Letter(grid[i][j], i, j);
164 }
165 }
166 }
167 @Override public Board clone() {
168 Letter[][] boardClone = new Letter[sideLength][sideLength];
169 for (int i = 0; i < sideLength; i++) {
170 for (int j = 0; j < sideLength; j++) {
171 boardClone[i][j] = board[i][j].clone();
172 }
173 }
174 Board thisClone = new Board(grid, dict);
175 return thisClone;
176 }
177 public int compareTo(Board that) {
178 if (this.getScore() > that.getScore()) {
179 return 1;
180 } else if (this.getScore() < that.getScore()) {
181 return -1;
182 } else {
183 return 0;
184 }
185 }
186 /**
187 * Traverses the Boggle board, makes a list of words, and finds the score.
188 *
189 */
190 public void generate() {
191 // on each of the letters of the board

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 12

192 // traverse the possible words recursively
193 for (int i = 0; i < sideLength; i++) {
194 for (int j = 0; j < sideLength; j++) {
195 board[i][j].traverse("");
196 }
197 }
198 int score = 0;
199 Object[] words = getWords().toArray();
200 for (Object word : words) {
201 String wordString = (String) word;
202 int length = wordString.length();
203 // minimum length is 3
204 if (length < 3) {
205 continue;
206 }
207 // calculate score
208 if (length == 3 || length == 4) {
209 score += 1;
210 } else if (length == 5) {
211 score += 2;
212 } else if (length == 6) {
213 score += 3;
214 } else if (length == 7) {
215 score += 5;
216 } else if (length >= 8) {
217 score += 11;
218 }
219 }
220 this.score = score;
221 }
222 public int getAge() {
223 return age;
224 }
225 public Dictionary getDict() {
226 return dict;
227 }
228 // TODO make this automatically call generate() if score is not set. Then make generate private
229 public int getScore() {
230 return score;
231 }
232 public int getSideLength() {
233 return sideLength;
234 }
235 public HashSet<String> getWords() {
236 return words;
237 }
238 public String[] getWordsSorted() {
239 String[] wordsArray = (String[]) words.toArray(new String[words.size()]);
240 Arrays.sort(wordsArray, new ByStringLength());
241 // convert to array
242 return wordsArray;
243 }
244 public String gridToString() {
245 String s = "";
246 for (char c[] : grid) {
247 for (char d : c) {
248 s += d;
249 }
250 }
251 return s;
252 }
253 public void incrementAge() {
254 age++;
255 }
256 /**
257 * Merges two Boggle boards randomly.<BR>
258 * Calculates the score of each board and on each character in the grid,
259 * chooses randomly between three choices for the child:

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 13

260 * <UL>
261 * <LI>use the character from the higher−scoring grid (weighted 6.6/10, or
262 * 6/10 if incestuous)
263 * <LI>use the character from the lower−scoring grid (weighted 3.3/10, or
264 * 3/10 if incestuous)
265 * <LI>use a random character (weighted 0.1/10, or 1/10 if incestuous)
266 * </UL>
267 * @param that Boggle board to merge with the calling board
268 * @return the child board
269 */
270 public Board merge(Board that) {
271 if (this.sideLength != that.sideLength) { return null; }
272 // init child
273 char[][] childGrid = new char[sideLength][sideLength];
274 // determine which one is higher or lower
275 Board higher;
276 Board lower;
277 // caller is higher
278 if (this.getScore() > that.getScore()) {
279 higher = this;
280 lower = that;
281 }
282 // parameter is higher
283 else if (that.getScore() < this.getScore()) {
284 higher = that;
285 lower = this;
286 }
287 // they are equal; choose randomly
288 else {
289 if ((int) (Math.random() * 2) == 0) {
290 higher = this;
291 lower = that;
292 } else {
293 higher = that;
294 lower = this;
295 }
296 }
297 // check if the parents are too similar
298 int sameLetters = 0;
299 for (int i = 0; i < sideLength; i++) {
300 for (int j = 0; j < sideLength; j++) {
301 if (higher.grid[i][j] == lower.grid[i][j]) {
302 sameLetters++;
303 }
304 }
305 }
306 // if they are, mark it as incestuous
307 boolean incest = (float) sameLetters / (sideLength * sideLength) >= 0.85;
308 double higherChance = 6.6, lowerChance = 3.3;
309 if (incest) {
310 higherChance = 6;
311 lowerChance = 3;
312 }
313 // construct the child grid
314 double temp;
315 for (int i = 0; i < sideLength; i++) {
316 for (int j = 0; j < sideLength; j++) {
317 temp = Math.random() * 10; // 0−9.9
318 // higher
319 if (temp >= 0 && temp < higherChance) {
320 childGrid[i][j] = higher.grid[i][j];
321 } else if (temp >= higherChance
322 && temp < (higherChance + lowerChance)) {
323 // 6−9
324 childGrid[i][j] = lower.grid[i][j];
325 } else {
326 // 9.9−10 or 9−10
327 childGrid[i][j] = randomLetter();
328 }

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 14

329 }
330 }
331 // make the child board
332 Board child = new Board(childGrid, dict);
333 return child;
334 }
335 public Board mutate(int mutationProbability) {
336 assert mutationProbability >= 0 && mutationProbability <= 100;
337 char[][] gridMutated = new char[sideLength][sideLength];
338 for (int i = 0; i < sideLength; i++) {
339 for (int j = 0; j < sideLength; j++) {
340 if ((int) (Math.random() * 100) < mutationProbability) {
341 gridMutated[i][j] = randomLetter();
342 } else {
343 gridMutated[i][j] = grid[i][j];
344 }
345 }
346 }
347 Board thisMutated = new Board(gridMutated, dict);
348 return thisMutated;
349 }
350 @Override public String toString() {
351 return gridToString() + " " + getScore();
352 }
353 private char randomLetter() {
354 return (char) (Math.random() * (90 - 65 + 1) + 65);
355 }
356 }

A.2 BoardTester.java

1 package com.ankurdave.boggle;
2 import java.io.File;
3 import java.io.FileNotFoundException;
4 import java.util.Scanner;
5 public class BoardTester {
6 static char[][] grid;
7 static String gridImage = "";
8 static Scanner in = new Scanner(System.in);
9 static int SIDE_LENGTH;

10 static Scanner tempIn;
11 public static void main(String[] args) {
12 // need at least 1 argument
13 if (args.length < 1) {
14 System.out
15 .println("Usage: java BoggleTester dictionaryPath [sideLength [gridPath]]");
16 System.exit(-1);
17 }
18 // first argument: path of dictionary file
19 String path = args[0];
20 // second argument (optional): side length
21 if (args.length >= 2) {
22 SIDE_LENGTH = Integer.parseInt(args[1]);
23 } else {
24 System.out.print("Length of a side of the Boggle board: ");
25 SIDE_LENGTH = in.nextInt();
26 }
27 // third argument (optional):
28 if (args.length >= 3) {
29 // can be either a path or a −
30 // if it’s a −, prompt the user for the board
31 // otherwise, read it in from the given path
32 if (args[2].equals("-")) {
33 tempIn = new Scanner(System.in);
34 System.out.println("Enter a " + SIDE_LENGTH + "x" + SIDE_LENGTH
35 + " Boggle board:");
36 } else {

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 15

37 try {
38 tempIn = new Scanner(new File(args[2]));
39 }
40 catch (FileNotFoundException e) {
41 System.out.println("File " + path + " not found!");
42 System.exit(-1);
43 }
44 }
45 String temp;
46 grid = new char[SIDE_LENGTH][SIDE_LENGTH];
47 for (int i = 0; i < SIDE_LENGTH; i++) {
48 temp = tempIn.nextLine();
49 for (int j = 0; j < temp.length(); j++) {
50 grid[i][j] = temp.charAt(j);
51 }
52 }
53 } else {
54 // make a random grid
55 System.out.println("Randomly generated Boggle board:");
56 grid = new char[SIDE_LENGTH][SIDE_LENGTH];
57 gridImage = "";
58 for (int i = 0; i < SIDE_LENGTH; i++) {
59 for (int j = 0; j < SIDE_LENGTH; j++) {
60 grid[i][j] = (char) (Math.random() * (90 - 65 + 1) + 65);
61 gridImage += grid[i][j] + " ";
62 }
63 gridImage += "\n";
64 }
65 // show the user the grid
66 System.out.println(gridImage);
67 }
68 // make the Boggle board from the above information
69 Board board = new Board(grid, path);
70 board.generate();
71
72 String[] words = board.getWordsSorted();
73
74 for (String word : words) {
75 System.out.println(word);
76 }
77
78 System.out.println(board);
79 }
80 }

A.3 ByBoardScore.java

1 package com.ankurdave.boggle;
2 import java.util.Comparator;
3 public class ByBoardScore implements Comparator<String> {
4 public int compare(String s1, String s2) {
5 int score1 = Integer.parseInt(s1.split(" ")[2]);
6 int score2 = Integer.parseInt(s2.split(" ")[2]);
7 return score2 - score1;
8 }
9 }

A.4 ByStringLength.java

1 package com.ankurdave.boggle;
2 import java.util.Comparator;
3 public class ByStringLength implements Comparator<String> {
4 public int compare(String s1, String s2) {
5 if (s1.length() > s2.length()) {
6 return 1;
7 } else if (s1.length() < s2.length()) {

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 16

8 return -1;
9 } else {

10 return s1.compareTo(s2);
11 }
12 }
13 }

A.5 Dictionary.java

1 package com.ankurdave.boggle;
2 import java.io.File;
3 import java.io.FileNotFoundException;
4 import java.util.ArrayList;
5 import java.util.Collections;
6 import java.util.Scanner;
7 public class Dictionary {
8 protected ArrayList<Letter> children;
9 public Dictionary() {

10 this.children = new ArrayList<Letter>();
11 }
12 public void add(String word) {
13 if (word.length() <= 0) { return; }
14 for (Letter a : this.children) {
15 if (a == null) {
16 continue;
17 }
18 if (a.getData() == word.charAt(0)) {
19 a.add(word.substring(1));
20 return;
21 }
22 }
23 Letter child = new Letter(word.charAt(0));
24 this.children.add(child);
25 child.add(word.substring(1));
26 Collections.sort(this.children);
27 }
28 public boolean beginsWord(String word) {
29 int index = Collections.binarySearch(this.children, new Letter(word
30 .charAt(0)));
31 // return false if child matching the first char of word does not exist
32 if (index < 0) { return false; }
33 // otherwise, check base case
34 if (word.length() == 1) { return true; }
35 // otherwise, traverse recursively
36 return children.get(index).beginsWord(word.substring(1));
37 }
38 public void buildDictionary(String path) {
39 // read dictionary file
40 try {
41 String temp;
42 Scanner file = new Scanner(new File(path));
43 while (file.hasNextLine()) {
44 temp = file.nextLine().toLowerCase();
45 this.add(temp);
46 }
47 }
48 catch (FileNotFoundException e) {
49 System.out.println("file " + path + " not found!");
50 System.exit(-1);
51 }
52 }
53 public boolean isWord(String word) {
54 int index = Collections.binarySearch(this.children, new Letter(word
55 .charAt(0)));
56 // return false if child matching the first char of word does not exist
57 if (index < 0) { return false; }
58 // otherwise, check base case

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 17

59 if (word.length() == 1) { return children.get(index).getEndsWord(); }
60 // otherwise, traverse recursively
61 return children.get(index).isWord(word.substring(1));
62 }
63 @Override public String toString() {
64 String s = "Dictionary[]\nchildren=";
65 for (Letter a : this.children) {
66 if (a == null) {
67 continue;
68 }
69 s += "\n" + a;
70 }
71 return s;
72 }
73 }
74
75 class Letter extends Dictionary implements Comparable<Letter> {
76 private char data;
77 private boolean endsWord = false;
78 public Letter(char data) {
79 super();
80 this.data = Character.toLowerCase(data);
81 }
82 @Override public void add(String word) {
83 if (word.length() == 0) {
84 this.endsWord = true;
85 return;
86 }
87 if (word.length() <= 0) { return; }
88 for (Letter a : this.children) {
89 if (a == null) {
90 continue;
91 }
92 if (a.getData() == word.charAt(0)) {
93 a.add(word.substring(1));
94 return;
95 }
96 }
97 Letter child = new Letter(word.charAt(0));
98 this.children.add(child);
99 child.add(word.substring(1));

100 Collections.sort(this.children);
101 }
102 public int compareTo(Letter that) {
103 if (this.getData() > that.getData()) {
104 return 1;
105 } else if (this.getData() < that.getData()) {
106 return -1;
107 } else {
108 return 0;
109 }
110 }
111 public char getData() {
112 return this.data;
113 }
114 public boolean getEndsWord() {
115 return this.endsWord;
116 }
117 @Override public String toString() {
118 String s = "Letter[data=" + this.data + "; endsWord=" + this.endsWord
119 + "]\nchildren=";
120 for (Letter a : this.children) {
121 if (a == null) {
122 continue;
123 }
124 s += "\n" + a;
125 }

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 18

126 return s;
127 }
128 }

A.6 DictionaryTester.java

1 package com.ankurdave.boggle;
2 import java.util.Scanner;
3 public class DictionaryTester {
4 public static void main(String[] args) {
5 Dictionary d = new Dictionary();
6 d.buildDictionary("words.txt");
7 Scanner in = new Scanner(System.in);
8 String input = "";
9 while (!(input.equals("QUIT"))) {

10 System.out.print("Enter a word: ");
11 input = in.nextLine();
12 System.out.println("\"" + input + "\""
13 + (d.isWord(input) ? " is a word." : " is not a word."));
14 }
15 }
16 }

A.7 GenerationEmptyException.java

1 package com.ankurdave.boggle;
2 /**
3 * Exception thrown when there are insufficient Boggles in the current
4 * generation to evolve to the next generation.
5 * @author ankur
6 */
7 public class GenerationEmptyException extends Exception {
8 public static final long serialVersionUID = 0;
9 private String message;

10 public GenerationEmptyException(String message) {
11 this.message = message;
12 }
13 @Override public String toString() {
14 return "GenerationEmptyException: " + message;
15 }
16 }

A.8 GeneticClient.java

1 package com.ankurdave.boggle;
2 import java.io.BufferedReader;
3 import java.io.IOException;
4 import java.io.InputStreamReader;
5 import java.io.PrintWriter;
6 import java.net.Socket;
7 import java.util.regex.Matcher;
8 import java.util.regex.Pattern;
9 public class GeneticClient {

10 private BufferedReader in;
11 private PrintWriter out;
12 private String serverAddress;
13 private int serverPort;
14 private static final Pattern pair = Pattern
15 .compile("^\\s*([\\w-]+)\\s*:\\s*([\\w -]+)\\s*$");
16 private GeneticClientThread worker;
17 private Board highest;
18 private Board outboundMigrant;
19 private Boolean highestChanged = true, migrantChanged = true;
20 private Socket socket;
21 public GeneticClient(String serverAddress, int serverPort, String dictPath,
22 int sideLength, int startingPopulation, int childrenPerCouple,
23 int popCap) {
24 this.serverAddress = serverAddress;

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 19

25 this.serverPort = serverPort;
26 worker = new GeneticClientThread(dictPath, sideLength,
27 startingPopulation, childrenPerCouple, popCap, this);
28 connect();
29 }
30 public void connect() {
31 while (true) {
32 try {
33 socket = new Socket(serverAddress, serverPort);
34 out = new PrintWriter(socket.getOutputStream(), true);
35 in = new BufferedReader(new InputStreamReader(socket
36 .getInputStream()));
37 }
38 catch (IOException e) {
39 System.err.println("Couldn't connect to server: " + e);
40 try {
41 Thread.sleep(2000);
42 }
43 catch (InterruptedException ex) {
44 break;
45 }
46 continue; // retry if failure
47 }
48 break; // terminate if success
49 }
50 }
51 public void run() {
52 worker.start();
53 try {
54 while (true) {
55 // communicate with server
56 if (highestChanged || migrantChanged) {
57 giveServerOutput();
58 }
59 readServerInput();
60 }
61 }
62 catch (IOException e) {
63 System.err.println(e);
64 }
65 finally {
66 worker.terminate();
67 out.close();
68 try {
69 in.close();
70 }
71 catch (IOException e) {}
72 try {
73 socket.close();
74 }
75 catch (IOException e) {}
76 }
77 }
78 public void setHighest(Board b) {
79 if (highest == null || b.getScore() > highest.getScore()) {
80 highest = b;
81 }
82 highestChanged = true;
83 }
84 public void setOutboundMigrant(Board b) {}
85 // TODO send server the score
86 private void giveServerOutput() {
87 if (highestChanged && highest != null) {
88 highestChanged = false;
89 out.println("Highest:" + highest);
90 }

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 20

91 if (migrantChanged && outboundMigrant != null) {
92 migrantChanged = false;
93 out.println("Migrant:" + outboundMigrant);
94 }
95 // end of transmission
96 out.println();
97 out.flush();
98 }
99 private void readServerInput() throws IOException {

100 String line;
101 Matcher m;
102 while (true) {
103 // for each line in the input
104 line = in.readLine();
105 if (line == null) {
106 throw new IOException("Server closed connection");
107 } else if (line.isEmpty()) {
108 break;
109 }
110 // try to find data in it
111 m = pair.matcher(line);
112 if (m.matches()) {
113 storeServerData(m.group(1), m.group(2));
114 if (m.group(1).equalsIgnoreCase("reset")) {
115 // throw away the rest of the message
116 do {
117 line = in.readLine();
118 } while (!line.isEmpty());
119 }
120 }
121 }
122 }
123 private void storeServerData(String name, String value) {
124 if (name.equalsIgnoreCase("migrant")) {
125 Board migrant = new Board(value, worker.getSideLength(), worker
126 .getDictionary());
127 worker.setInboundMigrant(migrant);
128 } else if (name.equalsIgnoreCase("pop-cap")) {
129 worker.setPopCap(Integer.parseInt(value));
130 } else if (name.equalsIgnoreCase("reset")) {
131 highest = null;
132 worker.reset();
133 }
134 }
135 }

A.9 GeneticClientTester.java

1 package com.ankurdave.boggle;
2 public class GeneticClientTester {
3 public static void main(String[] args) {
4 new GeneticClient("192.168.1.123", 4444, "words.txt", 4, 20, 5, 20)
5 .run();
6 }
7 }

A.10 GeneticClientThread.java

1 package com.ankurdave.boggle;
2 public class GeneticClientThread extends Thread {
3 private Population bp;
4 private Dictionary dict;
5 private int sideLength, startingPopulation, startingChildrenPerCouple,
6 startingPopCap;
7 private GeneticClient manager;
8 private Boolean resetRequested = false, terminateRequested = false;
9 private Board inboundMigrant;

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 21

10 public GeneticClientThread(String dictPath, int sideLength,
11 int startingPopulation, int childrenPerCouple, int popCap,
12 GeneticClient manager) {
13 this.sideLength = sideLength;
14 this.startingPopulation = startingPopulation;
15 this.startingChildrenPerCouple = childrenPerCouple;
16 this.startingPopCap = popCap;
17 this.manager = manager;
18 // init dictionary
19 dict = new Dictionary();
20 dict.buildDictionary(dictPath);
21 // init population
22 bp = new Population(sideLength, this.startingPopulation,
23 startingChildrenPerCouple, startingPopCap, dict);
24 }
25 @Override public void run() {
26 while (true) {
27 try {
28 if (inboundMigrant != null) {
29 bp.add(inboundMigrant);
30 inboundMigrant = null;
31 }
32 bp.evolve();
33 System.out.println(bp);
34 for (Board b : bp.getCurrentGeneration()) {
35 System.out.println(b);
36 }
37 System.out.println();
38 if (resetRequested) {
39 System.out.println("Reset");
40 bp = new Population(sideLength, this.startingPopulation,
41 startingChildrenPerCouple, startingPopCap, dict);
42 inboundMigrant = null;
43 resetRequested = false;
44 continue;
45 }
46 if (terminateRequested) {
47 break;
48 }
49 // communicate with manager
50 manager.setHighest(bp.highest());
51 // TODO analyze migration algorithm
52 manager.setOutboundMigrant(Util.weightedRandomFromList(bp
53 .getCurrentGeneration()));
54 }
55 catch (GenerationEmptyException e) {
56 System.err.println(e);
57 break;
58 }
59 }
60 }
61 public void terminate() {
62 terminateRequested = true;
63 }
64 public int getSideLength() {
65 return sideLength;
66 }
67 public Dictionary getDictionary() {
68 return dict;
69 }
70 public void setInboundMigrant(Board migrant) {
71 inboundMigrant = migrant;
72 }
73 // TODO analyze variable pop cap
74 public void setPopCap(int popCap) {
75 bp.setPopCap(popCap);
76 }

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 22

77 public void reset() {
78 resetRequested = true;
79 }
80 }

A.11 HillClimber.java

1 package com.ankurdave.boggle;
2 public class HillClimber {
3 public static void main(String[] args) {
4 Dictionary dict = new Dictionary();
5 dict.buildDictionary("words.txt");
6 for (int trialNum = 0; trialNum < 100; trialNum++) {
7 // create the starting Boggle
8 char[][] start = Util.randomGrid(4);
9 Board current = new Board(start, dict);

10 current.generate(); // find score of current Boggle
11 Board trial;
12 // start the timer
13 long startTime = System.currentTimeMillis();
14 // begin hill climbing
15 while (current.getScore() < 3500 && (System.currentTimeMillis() - startTime) < 1000000)

{
16 trial = current.mutate(10);
17 trial.generate();
18 if (trial.getScore() > current.getScore()) {
19 current = trial;
20 System.err.println(current);
21 }
22 }
23 // stop the timer
24 long stopTime = System.currentTimeMillis();
25 System.out.println(current + " " + (stopTime - startTime));
26 }
27 }
28 }

A.12 Population.java

1 package com.ankurdave.boggle;
2 import java.util.ArrayList;
3 import java.util.Collections;
4 import java.util.HashSet;
5 public class Population {
6 private int childrenPerCouple;
7 private ArrayList<Board> currentGeneration;
8 private Dictionary dict;
9 private int generation;

10 private int popCap;
11 private int sideLength;
12 public Population(int sideLength, int startingPopulation,
13 int childrenPerCouple, int popCap, Dictionary dict) {
14 assert sideLength > 0;
15 assert startingPopulation >= 0;
16 assert childrenPerCouple >= 0;
17 assert popCap >= startingPopulation;
18 assert dict != null;
19 // copy params to object fields
20 this.sideLength = sideLength;
21 this.childrenPerCouple = childrenPerCouple;
22 this.popCap = popCap;
23 this.dict = dict;
24 // make the first generation
25 generation = 1;
26 currentGeneration = new ArrayList<Board>();
27 Board temp;
28 for (int i = 0; i < startingPopulation; i++) {
29 temp = new Board(Util.randomGrid(sideLength), dict);

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 23

30 temp.generate();
31 currentGeneration.add(temp);
32 }
33 }
34 public void add(Board boggle) {
35 assert boggle != null;
36 currentGeneration.add(boggle);
37 }
38 public void add(char[][] grid) {
39 assert grid.length == sideLength;
40 currentGeneration.add(new Board(grid, dict));
41 }
42 public int averageScore() throws GenerationEmptyException {
43 if (numBoggles() <= 0) { throw new GenerationEmptyException(
44 "not enough Boggles in current generation to find average"); }
45 int counter = 0;
46 int total = 0;
47 for (Board b : currentGeneration) {
48 counter++;
49 total += b.getScore();
50 }
51 return total / counter;
52 }
53 public void evolve() throws GenerationEmptyException {
54 if (numBoggles() <= 1) { throw new GenerationEmptyException(
55 "not enough Boggles in current generation to evolve"); }
56 // sort the current generation by score
57 Collections.sort(currentGeneration);
58 // make children
59 ArrayList<Board> children = new ArrayList<Board>();
60 Board parent1;
61 Board parent2;
62 Board child;
63 for (int i = 0; i < this.numBoggles() - 1; i += 2) {
64 // get the next two parents
65 parent1 = currentGeneration.get(i);
66 parent2 = currentGeneration.get(i + 1);
67 // mate them childrenPerCouple times
68 for (int j = 0; j < childrenPerCouple; j++) {
69 child = parent1.merge(parent2);
70 children.add(child);
71 }
72 }
73 // do elitist selection
74 // highest() seems to clone the object or something and so age is not
75 // preserved
76 Board highest = currentGeneration.get(currentGeneration.size() - 1);
77 children.add(highest);
78 // make sure there are no duplicates
79 HashSet<String> uniqueGrids = new HashSet<String>();
80 for (int i = 0; i < children.size(); i++) {
81 Board b = children.get(i);
82 if (uniqueGrids.contains(b.gridToString())) {
83 children.remove(b);
84 continue; // skip scoring duplicate boards
85 } else {
86 uniqueGrids.add(b.gridToString());
87 }
88 // score each unique board
89 b.generate();
90 }
91 Collections.sort(children);
92 // make sure number of children <= popCap by removing the worst few
93 Collections.sort(children);
94 while (children.size() > popCap) {
95 children.remove(0);
96 }

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 24

97 // apply changes
98 currentGeneration.clear();
99 currentGeneration.addAll(children);

100 // record generation change
101 generation++;
102 }
103 public ArrayList<Board> getCurrentGeneration() {
104 return currentGeneration;
105 }
106 public int getGeneration() {
107 return generation;
108 }
109 public int getPopCap() {
110 return popCap;
111 }
112 public Board highest() throws GenerationEmptyException {
113 if (numBoggles() <= 0) { throw new GenerationEmptyException(
114 "not enough Boggles in current generation to find maximum"); }
115 return Collections.max(currentGeneration);
116 }
117 public Board lowest() throws GenerationEmptyException {
118 if (numBoggles() <= 0) { throw new GenerationEmptyException(
119 "not enough Boggles in current generation to find minimum"); }
120 return Collections.min(currentGeneration);
121 }
122 public int numBoggles() {
123 return currentGeneration.size();
124 }
125 public Board random() {
126 return currentGeneration.get((int) (Math.random() * numBoggles()));
127 }
128 public Board removeHighest() throws GenerationEmptyException {
129 if (numBoggles() <= 0) { throw new GenerationEmptyException(
130 "not enough Boggles in current generation to find maximum"); }
131 Board highest = Collections.max(currentGeneration);
132 currentGeneration.remove(highest);
133 return highest;
134 }
135 public void setPopCap(int popCap) {
136 this.popCap = popCap;
137 }
138 @Override public String toString() {
139 String s = null;
140 try {
141 s = generation + " " + highest().getScore() + " " + averageScore()
142 + " " + lowest().getScore();
143 }
144 catch (GenerationEmptyException e) {
145 System.err.println(e);
146 }
147 return s;
148 }
149 }

A.13 Server.java

1 package com.ankurdave.boggle;
2 import java.io.IOException;
3 import java.net.ServerSocket;
4 import java.net.Socket;
5 import java.util.ArrayList;
6 import java.util.Collections;
7 /**
8 * Server component of DistBoggle. Manages BoggleClients.
9 * @author ankur

10 */
11 public class Server {

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 25

12 private int trials = 1;
13 private static final int DEFAULT_POP_CAP = 20;
14 private static final int POP_CAP_RANGE = 0;
15 private int curClientID = 0;
16 private Dictionary dict;
17 private Board highest;
18 private ServerSocket socket;
19 private long startTime;
20 private ArrayList<ServerThread> threads = new ArrayList<ServerThread>();
21 public Server(int port) {
22 // create the socket
23 socket = null;
24 try {
25 socket = new ServerSocket(port);
26 }
27 catch (IOException e) {
28 System.err.println("Could not listen on port " + port);
29 System.exit(1);
30 }
31 // create the dictionary
32 dict = new Dictionary();
33 dict.buildDictionary("words.txt");
34 }
35 // TODO analyze migrant allocation algorithm
36 public synchronized void addMigrant(Board migrant, ServerThread caller) {
37 Collections.sort(threads);
38 for (ServerThread c : threads) {
39 if ((c.getMigrant() == null || c.getMigrant().getScore() < migrant
40 .getScore())
41 && caller != c) {
42 c.setMigrant(migrant);
43 break;
44 }
45 }
46 }
47 public synchronized Dictionary getDictionary() {
48 return dict;
49 }
50 // TODO analyze variable pop cap
51 public synchronized int getPopCapForClient(int clientID) {
52 Collections.sort(threads);
53 if (threads.size() == 1) { return DEFAULT_POP_CAP; }
54 for (int i = 0; i < threads.size(); i++) {
55 if (threads.get(i).getId() == clientID) { return (DEFAULT_POP_CAP + POP_CAP_RANGE / 2)
56 - i * (POP_CAP_RANGE / (threads.size() - 1)); }
57 }
58 return DEFAULT_POP_CAP;
59 }
60 /**
61 * Starts listening for clients. Starts a new thread for each client. Never
62 * returns.
63 */
64 public void listen() {
65 try {
66 while (true) {
67 Socket s = socket.accept();
68 ServerThread serverThread = new ServerThread(this, s,
69 curClientID++);
70 threads.add(serverThread);
71 serverThread.start();
72 // start the timer
73 if (startTime == 0) { // if not already started
74 startTime = System.currentTimeMillis();
75 }
76 }
77 }
78 catch (IOException e) {

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 26

79 System.err.println("Error while listening: " + e);
80 System.exit(1);
81 }
82 }
83 public synchronized void setHighest(Board b) {
84 if (highest == null || b.getScore() > highest.getScore()) {
85 highest = b;
86 System.err.println(highest);
87 if (highest.getScore() >= 3500) {
88 reset();
89 return;
90 }
91 }
92
93 if (System.currentTimeMillis() - startTime >= 1000000) {
94 reset();
95 }
96
97 if (trials >= 100) {
98 System.exit(0);
99 }

100 }
101 public synchronized void removeThread(ServerThread t) {
102 threads.remove(t);
103 }
104 private void reset() {
105 trials++;
106 System.out.println(highest + " "
107 + Long.toString(System.currentTimeMillis() - startTime));
108 // reset state
109 highest = null;
110 for (ServerThread t : threads) {
111 t.reset();
112 }
113 startTime = System.currentTimeMillis(); // restart timer
114 }
115 }

A.14 ServerTester.java

1 package com.ankurdave.boggle;
2 public class ServerTester {
3 public static void main(String[] args) {
4 new Server(4444).listen();
5 }
6 }

A.15 ServerThread.java

1 package com.ankurdave.boggle;
2 import java.io.BufferedReader;
3 import java.io.IOException;
4 import java.io.InputStreamReader;
5 import java.io.PrintWriter;
6 import java.net.Socket;
7 import java.util.regex.Matcher;
8 import java.util.regex.Pattern;
9 /**

10 * Thread started by BoggleServer to handle BoggleClients.
11 * @author ankur
12 */
13 public class ServerThread extends Thread implements Comparable<ServerThread> {
14 private static final Pattern pair = Pattern
15 .compile("^\\s*([\\w-]+)\\s*:\\s*([\\w -]+)\\s*$");
16 private int clientID;
17 private BufferedReader in;
18 private Board migrant;
19 private PrintWriter out;

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 27

20 private int score;
21 private Server server;
22 /**
23 * The socket used to communicate with the client.
24 */
25 private Socket socket;
26 public ServerThread(Server server, Socket socket, int clientID) {
27 super("BoggleServerThread");
28 this.server = server;
29 this.socket = socket;
30 this.clientID = clientID;
31 }
32 public int compareTo(ServerThread that) {
33 return that.getScore() - this.getScore(); // descending order by
34 // default
35 }
36 public Board getMigrant() {
37 return migrant;
38 }
39 public int getScore() {
40 return score;
41 }
42 public void reset() {
43 out.println("Reset: yes");
44 // end the transmission
45 out.println();
46 out.flush();
47 score = 0;
48 migrant = null;
49 }
50 @Override public void run() {
51 try {
52 // init the IO facilities for the socket
53 out = new PrintWriter(socket.getOutputStream(), true);
54 in = new BufferedReader(new InputStreamReader(socket
55 .getInputStream()));
56 while (true) {
57 readClientInput();
58 giveClientOutput();
59 }
60 }
61 catch (IOException e) {
62 System.err.println(e);
63 }
64 finally {
65 server.removeThread(this);
66 out.close();
67 try {
68 in.close();
69 }
70 catch (IOException e) {}
71 try {
72 socket.close();
73 }
74 catch (IOException e) {}
75 }
76 }
77 public void setMigrant(Board migrant) {
78 this.migrant = migrant;
79 }
80 private void giveClientOutput() {
81 // give the migrant if there is one
82 if (migrant != null) {
83 out.println("Migrant: " + migrant);
84 migrant = null;
85 }
86 // give the new pop cap

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 28

87 out.println("Pop-Cap: " + server.getPopCapForClient(clientID));
88 // end the transmission
89 out.println();
90 out.flush();
91 }
92 private void readClientInput() throws IOException {
93 String line;
94 Matcher m;
95 while (true) {
96 // for each line in the input
97 line = in.readLine();
98 if (line == null) {
99 throw new IOException("Client closed connection");

100 } else if (line.isEmpty()) {
101 break;
102 }
103 // try to find data in it
104 m = pair.matcher(line);
105 if (m.matches()) {
106 storeClientData(m.group(1), m.group(2));
107 }
108 }
109 }
110 private void storeClientData(String name, String value) {
111 if (name.equalsIgnoreCase("score")) {
112 score = Integer.parseInt(value);
113 } else if (name.equalsIgnoreCase("migrant")) {
114 Board migrant = new Board(value, 4, server.getDictionary());
115 server.addMigrant(migrant, this);
116 } else if (name.equalsIgnoreCase("highest")) {
117 Board highest = new Board(value, 4, server.getDictionary());
118 server.setHighest(highest);
119 }
120 }
121 }

A.16 Util.java

1 package com.ankurdave.boggle;
2 import java.util.List;
3 public class Util {
4 /**
5 * Creates a character grid filled with random uppercase letters.
6 * @param sideLength length of one side of the random grid
7 * @return the random grid
8 */
9 public static char[][] randomGrid(int sideLength) {

10 char[][] temp = new char[sideLength][sideLength];
11 for (int i = 0; i < sideLength; i++) {
12 for (int j = 0; j < sideLength; j++) {
13 // rand 65−90
14 temp[i][j] = (char) (Math.random() * (90 - 65 + 1) + 65);
15 }
16 }
17 return temp;
18 }
19 /**
20 * Taken from http://www.perlmonks.org/?node_id=158482 How it works: on the
21 * first iteration, the if will always be true, establishing the first
22 * Boggle as the random one (unless the first boggle scores 0). On
23 * successive iterations, every other Boggle gets a weighted chance at
24 * replacing the previous Boggle.
25 */
26 public static Board weightedRandomFromList(List<Board> list) {
27 int sum = 0;
28 Board result = null;
29 for (Board b : list) {
30 if (Math.random() * (sum += b.getScore() * b.getScore()) < b

Ankur Dave Candidate #0844-028



Optimizing Boggle boards: An evaluation of parallelizable techniques 29

31 .getScore()
32 * b.getScore()) {
33 result = b;
34 }
35 }
36 assert result != null;
37 return result;
38 }
39 }

Ankur Dave Candidate #0844-028


