
Arthur: Rich Post-Facto Debugging for Production Analytics Applications

Ankur Dave, Matei Zaharia, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract
Debugging the massive parallel computations that run in
today’s datacenters is hard, as they consist of thousands
of tasks processing terabytes of data. It is especially hard
in production settings, where performance overheads of
more than a few percent are unacceptable. To address this
challenge, we present Arthur, a new debugger that pro-
vides a rich set of analysis tools at close to zero runtime
overhead through selective replay of data flow applica-
tions. Unlike previous replay debuggers, which add high
overheads due to the need to log low-level nondetermin-
istic events, Arthur takes advantage of the structure of
large-scale data flow models (e.g., MapReduce), which
split work into deterministic tasks for fault tolerance, to
minimize its logging cost. We use selective replay to im-
plement a variety of debugging features, including re-
running any task in a single-process debugger; ad-hoc
queries on computation state; and forward and backward
tracing of records through the computation, which we
achieve using a program transformation at replay time.
We implement Arthur for Hadoop and Spark, and show
that it can be used to find a variety of real bugs.

1 Introduction

Cluster computing frameworks such as Hadoop [1] and
Dryad [15] have been widely adopted to enable sophis-
ticated processing of large datasets. These systems pro-
vide a simple “data flow” programming model consisting
of high-level transformations on distributed datasets, and
hide the complexities of distribution and fault tolerance.

While these frameworks have been highly success-
ful, debugging the parallel applications written in them
is hard. To solve correctness or performance issues,
users must understand the actions of thousands of par-
allel tasks, which produce terabytes of intermediate data
across a cluster.

Debugging becomes especially difficult in production
settings. Although tools for testing assertions, tracing
through data flows, and replaying code exist (e.g., In-
spector Gadget [20], Daphne [16], liblog [11], and
Newt [8]), they invariably add overhead. For large-scale
applications running 24/7, even 10% overhead can be
expensive, so most operators do not use these tools in

production, making bugs that occur in production time-
consuming to diagnose and fix.

In this paper, we present a new debugger, Arthur, that
can provide these debugging features at close to zero
runtime overhead, using selective replay of parts of the
computation. Unlike previous replay debuggers for dis-
tributed systems [11, 13, 3, 4], which need to log a wide
array of non-deterministic events (e.g., message inter-
leavings) and are therefore expensive, we achieve our
low overhead by taking advantage of the structure of
modern data-parallel applications as graphs of determin-
istic tasks. Task determinism is implicitly assumed by the
fault and straggler mitigation techniques in these frame-
works [9, 15], but we use this same feature to efficiently
replay parts of the task graph for debugging.1

While the core idea of selective replay is simple, we
show that it can be used to implement a rich set of de-
bugging tools. These include:

• Forward and backward tracing of records through
just the portion of the job that they affect.

• Interactive ad-hoc queries on intermediate datasets.

• Re-execution of any task in the job in a single-
process profiler or debugger.

• Introduction of assertions or instrumentation
(e.g., print statements) into the job.

To implement these features, Arthur must tackle sev-
eral challenges. First, despite frameworks’ assumption of
task determinism, user error may cause nondeterministic
replay, making it impossible to reconstruct a task’s out-
put. We do not aim to reproduce nondeterministic results,
but instead detect them using checksums of task output
across re-executions. We show that this checksumming
adds minimal overhead to the original execution.

Second, to enable interactive debugging, Arthur also
needs to be fast at replay time. We achieve high per-
formance by (1) only replaying the subset of the job’s
task graph that is needed for a particular debugging ac-
tion (e.g., to rebuild the input for one task), (2) paralleliz-
ing the replay over a cluster, and (3) caching frequently

1Note that Arthur does not aim to debug non-deterministic prob-
lems, such as the user accidentally writing a non-deterministic task,
but it will detect them using a checksum of each task’s output. We
show that this checksumming adds minimal overhead.



queried datasets in memory to provide fast access. As a
result, many debugging queries can be answered within
several seconds, even for large applications.

Third, Arthur’s tracing feature requires tracing records
across a variety of operators (e.g., map, filter, reduce,
and group-by), taking into account the semantics of each
operator. We perform tracing using a program transfor-
mation that augments each operator in the job to propa-
gate tags with each record. To make the tracing efficient,
we use a compressed tag set representation based on
Bloom filters. A major advantage of our program trans-
formation approach is that we do not need to modify the
parallel runtime (Spark) to propagate tags.

We implement Arthur to support loading execution
logs from either Hadoop or Spark [23] (a recent clus-
ter computing framework with a concise Scala API). The
system then replays the job in a Spark-based parallel run-
time. It provides an interactive Scala shell from which the
user can replay tasks, query intermediate datasets using
arbitrary Spark queries, and run other analyses.

We evaluate Arthur on a variety of synthetic errors and
three real bugs in Hadoop and Spark programs. The is-
sues we test include logic bugs such as incorrect input
handling, performance problems such as data skew, and
unexpected program outputs that Arthur can trace back
to specific input records. In all cases, Arthur’s suite of
tools can quickly narrow in on the problem. At recording
time, Arthur adds less than 4% overhead and produces
logs at most several megabytes in size. At replay time,
Arthur finishes most analyses in a fraction of the running
time of the original job, thanks to selective replay and
in-memory caching, and supports querying intermediate
datasets in sub-second time.

To summarize, our contributions are:

• The observation that data flow frameworks’ decom-
position of jobs into deterministic tasks, which is
fundamental in these systems for fault tolerance,
can also be used to for low-cost replay debugging.

• A set of rich and efficient debugging tools that se-
lectively replay only the part of the computation
needed for an analysis, including ad-hoc queries and
forward and backward record tracing.

• A fast, interactive environment for debugging jobs
that allows ad-hoc queries in the Scala language and
provides high responsiveness using parallel execu-
tion and in-memory caching.

The rest of the paper is organized as follows. Section 2
describes the target environment for Arthur. We then dis-
cuss its architecture and capabilities in Sections 3–6.
Section 7 discusses our implementation. We then evalu-
ate Arthur (Section 8), discuss limitations and extensions
(Section 9), and survey related work (Section 10).

map reduceByKey topK 

Clicks (AdID, 1) (AdID, count) Top ads 

Figure 1: Dependency graph for the tasks produced in our
example Spark program. Tall boxes represent datasets,
while filled boxes represent partitions of a dataset, which
are computed in parallel by different tasks.

2 Target Environment

Arthur is designed for parallel computing frameworks
that use a data flow programming model, which include
MapReduce [9], Dryad [15], Spark [23], Hyracks [5],
Pig [21], FlumeJava [6], and others. It can also be ap-
plied to frameworks that are not typically thought of as
data flow but do break computations into deterministic
tasks, such as the Bulk Synchronous Parallel model in
Pregel [18], where nodes operate on data locally and
communicate at a barrier through the equivalent of a re-
duce operation. Many frameworks adopt this type of de-
terministic model for fault tolerance.

Conceptually, data flow frameworks allow users to
build and manipulate parallel collections of records,
which we refer to simply as datasets. Users manipulate
these datasets through deterministic transformation op-
erators, such as MapReduce’s map and reduce operators
and DryadLINQ’s SQL-like transformations. Typically,
each dataset is immutable and transformations return a
new dataset, although in practice implementations may
reuse storage space for different datasets.

Data flow frameworks implement this abstraction by
parallelizing transformations into tasks that execute con-
currently across the cluster. Each task transforms its
input records independently. For example, a map task
would run a user function on each element of its input.

Task determinism is implicitly assumed for the pur-
pose of straggler and fault recovery. In straggler miti-
gation, the framework speculatively launches duplicate
copies of slow-running tasks in the hope that slow perfor-
mance is a machine-specific problem. In fault recovery,
frameworks use the dependency graph between tasks to
recompute data partitions lost after a failure [9, 15]. Both
of these techniques require tasks to execute deterministi-
cally, and Arthur’s replay approach further takes advan-
tage of this assumption to provide accurate replay. Nev-
ertheless, Arthur can detect nondeterminism and alert the
user to the error, as described in Section 3.

To illustrate the structure of a data flow program, Fig-

2



ure 1 shows the lineage graph for a simple Spark program
that computes the top 100 ads clicked in a log. This pro-
gram’s code is shown below:

val topAds = clicks.map(c => (c.adID, 1))
.reduceByKey((a, b) => a+b)
.topK(100)

This program uses Spark’s functional API in the Scala
language [23] to take a dataset called clicks (loaded,
e.g., from a file) and run map, reduce, and topK trans-
formations on it. The user code passed to these transfor-
mations (in this case, the Scala functions c => (c.adID,
1) and (a, b) => a+b) is expected to be deterministic.

Using Arthur, we can rerun just enough portions of
the dependency graph to answer a particular debugging
query. For example, if one of the reduce tasks is running
slowly, we could replay all of the maps and that one re-
duce task, without having to replay the rest of the job.

3 Architecture

The main idea in Arthur is that we can record a data flow
program’s dependency graph at runtime, and selectively
replay parts of the execution at debug time to answer
users’ questions. In this section, we describe how Arthur
performs recording and replay.

At record time, Arthur runs as a daemon collocated
with the cluster computing framework’s master that logs
several types of information. The most important is the
program’s dependency graph, which consists of every
transformation in the program (e.g., the map and reduce
in MapReduce or an operator in DryadLINQ or Spark)
along with what input datasets or external files it acts on,
and how it was partitioned into tasks. Arthur also records
a checksum of each task’s output; this allows the debug-
ger to compare the checksums at replay time to the origi-
nal ones, and alert the user that a task is nondeterministic
if they differ. Finally, Arthur logs the execution time of
each task, as well as the cause of failure (e.g., an un-
caught exception) for any tasks that fail. Figure 2a sum-
marizes the flow of information at record time.

After the program has finished running, the user
launches Arthur in replay mode and loads the program’s
execution log. Arthur then accepts queries through an in-
teractive shell and uses the recorded information to re-
play parts of the program’s execution on demand. Re-
play takes place in parallel on the cluster; Arthur replays
tasks from the appropriate parts of the dependency graph
by launching them using Spark. Figure 2b illustrates the
flow of information at replay time.

Arthur’s basic replay functionality, described in Sec-
tion 4, supports rerunning portions of the program ex-
actly. This allows users to visualize the program’s de-

Log	
  

Master	
  

tasks	
  
results,	
  
checksums,	
  
events	
  

Workers	
  

lineage,	
  
checksums,	
  
events	
  

(a) Recording

Log	
  

Master	
  

tasks	
   results,	
  
checksums	
  

Workers	
  

lineage	
  

user	
  input	
  

(b) Debugging

Figure 2: Flow of information while recording a pro-
gram’s execution and replaying and debugging the pro-
gram. MapReduce, Dryad, and Spark carry out user
transformations by deploying tasks onto the cluster and
receiving their results. Arthur logs additional informa-
tion about the program’s execution, which it can replay
on demand after the program finishes.

pendency graph, explore intermediate datasets, and rerun
specific tasks locally in a conventional debugger.

Arthur also provides a more powerful type of replay
that involves modifying the original operator graph. This
makes it possible to perform analyses such as tracing
records forward and backward through the data flow (de-
scribed in Section 5). It also makes it possible to insert
post-hoc instrumentation into the execution graph, such
as assertions on intermediate datasets and other custom
code (described in Section 6).

4 Basic Features

Arthur’s core features are built on top of its ability to
load the original program graph and replay parts of it
on demand. The user accesses these features through an
interactive shell based on Spark’s Scala shell.

4.1 Data Flow Visualization

The simplest tool that Arthur provides is to use the lin-
eage of datasets in the execution log to provide a visu-
alization of the program’s data flow graph. Such a vi-
sualization can be helpful in understanding the data ac-
cess patterns and general structure of the program, and
it only requires local analysis rather than re-execution of
tasks in the job. Figure 3 shows an example lineage graph
produced by Arthur on a PageRank application. Arrows
point from datasets to their dependencies. The graph in-
dicates that dataset 4 is used repeatedly in future compu-
tations, suggesting that it might be a good candidate to
be cached in memory on the cluster, for example.

3



Figure 3: Partial lineage graph of a Spark application, as
plotted by Arthur.

4.2 Exploration of Intermediate Datasets
In debuggers for programs on a single machine, variable
inspector windows and “print” commands give visibility
into a program’s intermediate state. Arthur can provide
a similar experience for data flow programs by allowing
the user to query any intermediate dataset post-execution
from the interactive debugger shell. To query an inter-
mediate dataset, we (1) read the dependency graph that
Arthur recorded, (2) find the tasks required to rebuild it,
and (3) run them on workers across the cluster. Queries
on datasets can be written using any of the operators in
Spark [23], which include relational operators, sampling,
and transformations using arbitrary Scala code.

For example, the following console session shows how
a user might explore an intermediate dataset in the pro-
gram from Section 2 that computes the top 100 ads
clicked in a log. The user loads the topads.log execu-
tion trace and queries dataset 2, which is a collection of
ads and the number of user clicks on each ad.

scala> val r = new EventLogReader("topads.log")
r: EventLogReader = EventLogReader@726b37ad

scala> r.datasets(2).take(5) // sample first 5 ads
// and click counts
// from dataset 2

res0: Array[(AdID, Int)] = [...]

scala> r.datasets(2).map(pair => pair._2).mean()
res1: Int = 258288 // mean # of clicks per ad

Because Arthur executes its operations in parallel on
the cluster, queries on intermediate datasets run at least
as quickly as the original program, and frequently more
quickly because only part of the job needs to run in order
to produce the requested output. In addition, Arthur uses
Spark’s capability to cache information in memory once
it is computed, enabling it to respond to repeated queries
on the same dataset at interactive speeds.

Figure 4: Tasks that need to be rerun for local task replay.
To rerun a task (dark red), Arthur first runs its ancestors
(light blue) and saves the last output. It is only necessary
to run these tasks rather than the entire job.

4.3 Task Replay
Logic errors in bulk operators such as map functions can
be difficult to debug because they execute in parallel on
many machines. Programmers typically debug such op-
erators by printing trace information from within the op-
erator and later reading logs on machines that produced
exceptions or incorrect results. Instead, it would be help-
ful to use conventional step-through debuggers and pro-
filers. For example, if a certain task is throwing an ex-
ception on specific input, stepping through the user code
in that transformation would make it easier to debug.

Arthur supports running specific tasks locally under
such tools. To rerun a task locally, Arthur first computes
the input to that task by running the tasks that it depends
on; these tasks persist their outputs to disk. Arthur then
launches a small wrapper program locally that receives
the task metadata, fetches the outputs of parent tasks, and
executes the task in an isolated environment. The user
can then attach a conventional debugger such as JDB be-
fore the task runs, making it possible to set breakpoints,
catch exceptions, and step through the operator’s execu-
tion on the input data of interest.

Local task replay only requires a small portion of the
program to be re-executed. In particular, only the task’s
ancestors must be run, rather than the entire program.
Figure 4 shows that in order to debug an incorrect result
from a particular task, Arthur only needs to rerun those
tasks which contribute results to that task’s input.

5 Record Tracing

Finding the set of records that stemmed from or led
to a given record can be helpful in debugging the pro-
gram’s operations. For example, in a post to the Spark
user group, a user described a word count application that
unexpectedly output a count for the empty string in addi-
tion to the counts for each word in the input. Tracing that
record backward through the program would reveal that
the empty string stemmed from empty lines in the input,
allowing the user to fix the input parsing bug. Arthur pro-

4



[(C, Tag)] 

[(A, Tag)] [(B, Tag)] 

⋮ 

tag propagation logic 

[C] 

[A] [B] 

⋮ 
⇒ 

Figure 5: For tracing, Arthur rewrites the dependency
graph to propagate tags, which represent provenance,
along with each element. For example, the original de-
pendency graph contains an operator that merges datasets
of A and B elements to form a dataset of C elements. In
the modified graph, the original operator is wrapped with
logic to propagate the tags.

12 

24 

37 

13 

24 

37 

filter(x > 15) 

[Int] [Int] 

(a) filter on integers

(12, a) 

(24, b) 

(37, c) 

(13, d) 

[(Int, Tag)] 

filter(x.elem > 15) 

(24, b) 

(37, c) 

[(Int, Tag)] 

(b) filter on tagged integers

Figure 6: The original filter operator applies a user-
supplied predicate directly to each element, while the
augmented operator extracts the integer element before
passing it to the predicate.

vides the ability to perform such tracing “post-hoc” by
rerunning a transformed version of the original program.

5.1 Mechanism

Arthur provides record tracing using a program transfor-
mation in which it modifies each operation in the origi-
nal program graph to propagate a tag, which represents
provenance, along with each element. In addition to per-
forming its previous function, each operator in the new
execution graph is augmented to propagate tags, as illus-
trated in Figure 5. We implement forward and backward
record tracing by using this tagging primitive to mark
elements of interest and track their ancestors or descen-
dants in the data flow, as described in the next sections.

The program transformation approach takes advan-
tage of the functional, high-level nature of operations
in modern data flow frameworks, which provide Arthur
with precise information about how data moves through
the program. To extract this information, it is necessary
for the definition of each operator to include operator-

specific tag propagation information. For example, Fig-
ure 6 shows that the filter operator propagates tags by
extracting the element and passing it to the filtering func-
tion. In general, an operator f from datasets of type A to
datasets of type B must also come with a function from
the original operator f to an operator from datasets of
type (A,Tag) to those of type (B,Tag).

This approach to record tracing relies upon the fine-
grained semantics of dataset operations for accuracy. Op-
erations like the filter above carry each input record to
at most one output record, allowing the system to track
records without any loss of fidelity. On the other hand,
some frameworks, such as Hadoop, provide a coarser-
grained API where a “map” function operates on mul-
tiple input records at once using an iterator, and writes
output to a second iterator. Such operations expose only
a coarse data flow structure, limiting the fidelity pos-
sible with a simple program transformation. More in-
volved techniques such as static analysis of user-supplied
operations could improve fidelity. In addition, for these
types of operations, Newt [8] proposes a timing-based
approach using the observation that any particular out-
put record could only have been influenced by the input
records that have appeared until that point. We use this
approach in Arthur to handle Hadoop’s map operator and
a similar operator called mapPartitions in Spark.

5.2 Forward Tracing
Forward tracing is straightforward to implement on top
of the tag-propagating program transformation. Arthur
transforms the dependency graph into one that propa-
gates a Boolean tag in addition to each record. It ini-
tializes the input records of interest with a true tag and
other records with a false tag, runs the modified job us-
ing the Boolean or operation to combine tags, and finds
which output records end up with a true tag. We show
that forward tracing requires < 1.5× overhead at debug
time, while leaving the original runtime unaffected.

When only a few records are of interest, Arthur traces
them through just the relevant subset of the execution
graph. For forward tracing, Arthur reruns the required
tasks in each stage with tagging, inspects these tasks’
outputs, looks up the elements’ shuffle keys to determine
which tasks in the next stage read records from these
tasks, and repeats the process on the new set of tasks.

5.3 Backward Tracing
Like forward tracing, backward tracing builds upon tag
propagation. Because operators are not guaranteed to be
invertible, backward tracing cannot simply tag output
records with booleans and run the program in reverse. In-
stead, it tags each input element with a unique tag, runs

5



map reduceByKey topK 

Clicks (AdID, 1) (AdID, count) Top ads 

Figure 7: To trace an output record (rightmost rectangle)
backward through the data flow, we tag each input ele-
ment uniquely, run the job to propagate the tags to the
outputs, and find which input elements contributed tags
(leftmost blue, yellow, and red rectangles).

the job, examines the tags that ended up on the output
records of interest, and finds which input elements con-
tributed those tags. This process is illustrated in Figure 7.

We implement unique tags using integers. Each input
records is tagged with a unique integer based on its posi-
tion in the dataset, and tags are stored as sets of integers
which are combined using the union operation.

This approach works well for programs such as
database queries where each record has a clear prove-
nance. However, in iterative programs such as PageRank,
each output record is influenced by a large number of in-
put records. As a result, tags tend to diffuse widely, and
in the extreme case each output record may end up with
a tag from every input record. This approach therefore
performs poorly for long jobs because of the high space
overheads that tags impose in later stages. Representing
tags as Bloom filters provides a 1.78× speedup on Page-
Rank, at the cost of false positives.

An alternative approach to backward tracing is to trace
the output records of interest backward through each
stage, starting with the last stage. In each stage, Arthur
tags each record in the shuffle output from the previous
stage with a unique label, runs the stage, and finds which
input elements contributed to the tags of the output ele-
ments under consideration. This approach allows the tag
dependency structure to be precomputed, allowing fur-
ther backward tracing queries to be performed using just
a single cluster-wide join operation.

6 Post-Hoc Instrumentation

Arthur’s ability to replay a modified version of the data
flow graph, which we used in tracing, also opens the door
to other types of analyses. One that we have explored is
post-hoc instrumentation of the code, where assertions
or print statements can be added to part of the job af-
ter it was executed and can be verified in the debugger.
While step-through debugging and tracing are powerful

tools for tracking down problems, often the best way to
understand program execution, especially in a large ap-
plication, is to test assertions, and Arthur provides the
ability to inject these without runtime overhead.

The simplest type of assertion one can test is about
the contents of a particular dataset. For example, suppose
that we were debugging a PageRank application, and we
wanted to ensure that the PageRank of each node was
positive at all iterations. We could attach an assertion to
the dataset for a given operation as follows:

scala> val ranks = r.datasets(2) // dataset ID #2

scala> ranks.assert(r => r > 0)

Arthur will test the assertion by adding a no-op
map operator after the computation of ranks that ver-
ifies the predicate and reports any records that do
not pass it to the master. By default, Arthur’s asser-
tions are attached “lazily” (they are not tested right
away), so it is possible to attach multiple assertions
to multiple datasets, and then test all of them using a
EventLogReader.checkAssertions() function. Because
Arthur’s shell is simply a Scala interpreter, it is also
possible to attach these assertions programmatically
(e.g., search through the list of datasets for all the ones
created on a particular line of the program and add asser-
tions to all of them).

Apart from these types of data assertions, Arthur also
allows users to instrument their code more closely by re-
playing a modified version of the original binary. As long
as the functions in the program still produce the same
outputs (i.e., any modifications are only for print state-
ments or assertions), the system can still run the program
on the cluster. Currently, this modification has to be done
manually before starting Arthur, but we also wish to sup-
port dynamic modification of the program code using the
Java VM’s class reloading feature [17] in the future.

Finally, it would be straightforward to extend the as-
sertion mechanism to support “distributed assertions” (in
the form of a Spark expression that has to hold for an
entire dataset, e.g., that the sum of PageRanks is close
to 1) [10]. Currently, these can be checked using manual
Spark queries on the datasets, as in Section 4.2.

7 Implementation

We implemented Arthur in about 2000 lines of Scala
code. The system supports recording applications writ-
ten in either Hadoop or Spark, and replaying them in a
Spark-based parallel runtime where different debug op-
erations can be invoked interactively from a Scala shell.

At recording time, Arthur needs to obtain (1) the graph
of operators used in the parallel job and (2) checksums
of intermediate datasets, used to verify that re-execution

6



has been deterministic. In Hadoop, the operator graph is
trivial, because it is always a single MapReduce step, so
we only use the job’s configuration to rerun the same map
and reduce functions. In Spark, we added an event log-
ging module that logs the datasets used in each paral-
lel operation to a file. For checksums, we use a simple
Java OutputStream wrapper that computes a checksum
as data is written out. We only perform checksumming
for data at task boundaries (e.g., for the output data in a
map task), where it is either written to a file or sent over
the network, so the checksumming adds little overhead
because the cost of sending the data over the network is
much more expensive.

At replay time, Arthur replays both Hadoop and Spark
computations in the Spark engine, to take advantage
of features such as in-memory caching and interactive
queries. We use an existing layer on top of Spark, called
SHadoop, to execute Hadoop map and reduce tasks
within Spark. (This is conceptually simple because Spark
also supports map and reduce operators.) We begin by
loading the job’s code from a path provided by the user,
followed by an event log with the parallel operations run
during the job and their operator graphs (as discussed
above), then present the user with an interactive Scala
shell where they can view the operations and datasets
and run queries on them. The actual replay of both the
original operators and any transformed versions of them
(e.g., for assertions or tracing) is implemented by sub-
mitting jobs to the existing Spark engine, so it does not
require changes to Spark.

The debugging interface for Arthur is a shell in the
Scala programming language, based on Spark’s inter-
active Scala shell. It provides an object model to load
and debug jobs, and lets the user define local vari-
ables or functions using the complete Scala language,
and query datasets using functional operators written in
Spark. Users can also explicitly control which datasets to
cache in memory for repeated queries. For example, the
following console session shows how one might query an
intermediate dataset in a PageRank computation, whose
log is read from pagerank.log, and replay a task:

scala> val r = new EventLogReader("pagerank.log")
r: EventLogReader = EventLogReader@726b37ad

scala> r.datasets
#00: hadoopFile at PageRank$.main(PR.scala:31)
#01: map at PageRank$.main(PR.scala:31)
#02: map at PageRank$.main(PR.scala:35)
#03: groupBy at PageRank$.main(PR.scala:35)
#04: flatMap at PageRank$.main(PR.scala:35)
#05: map at PageRank$.iterate(PR.scala:91)
#06: cogroup at PageRank$.iterate(PR.scala:92)
[...]

scala> r.datasets(2).count()
res0: Long = 129941 // # of elements in dataset 2

1.04 1.02 1.02 

0.00 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 

PageRank Logistic 
regression 

k-means 

N
or

m
al

iz
ed

 ru
nt

im
e 

No debugging Debugging 

Figure 8: Performance comparison of various Spark ap-
plications with and without debugging.

845 

423 

1.79 0.66 25.5 
0 

200 
400 
600 
800 

1000 

Original 
program 

Query 1 Query 2 Query 3 Task 
rerun 

Ti
m

e 
(s

) 

Figure 9: Running time of various interactive queries in
the debugger. Arthur only runs the tasks necessary to an-
swer each query, so Query 1 is faster than the original
program. Subsequent operations benefit from in-memory
caching.

scala> r.debugTask(3, 1) // replay task 1 of dataset 3
[launches the JDB debugger]

Finally, for replaying individual tasks in a single-
process debugger, we wrote a small wrapper program
that reads a serialized Task object from Spark and reads
its input from a file (computed in parallel using the clus-
ter), then executes that task locally, so that we can spawn
this program in a local subprocess and attach JDB or
other debugging tools to it.

8 Evaluation

We evaluated Arthur using a variety of real bugs and in-
jected errors in Hadoop and Spark programs. We find that
Arthur’s overhead at record time is only 2–4%, making
it feasible to run continuously. At debug time, we found
that Arthur can respond to queries at interactive speeds
(on the order of a second) by caching frequently-used
datasets in memory, and often needs to rerun only a sub-
set of the job even for the first time it answers a query.
Finally, we evaluated Arthur’s applicability to different
types of bugs by showing how it can diagnose task fail-

7



ures, incorrect output, nondeterministic behavior, and de-
terministic performance problems in various programs.

8.1 Recording Overhead
We tested Arthur’s recording overhead on three Spark
programs: PageRank, logistic regression, and k-means.
Our PageRank program runs 15 iterations on the arti-
cles in a 54 GB Wikipedia dataset, our logistic regression
program runs 10 iterations on 10 million 10-dimensional
vectors of doubles, and our k-means program runs 5 it-
erations to cluster 100 million 4D points into 4 clus-
ters. Figure 8 compares the runtimes of these applica-
tions with and without Arthur when running on a 20-
node cluster. Because the overhead from task output
checksumming constitutes most of Arthur’s recording
overhead, applications with large task outputs see higher
overhead than those with small task outputs. Each Page-
Rank iteration updates the rank for every page, forcing
Arthur to checksum a large amount of information. On
the other hand, each iteration of logistic regression only
outputs a single vector, and each iteration of k-means
only updates a small number of cluster centers. Regard-
less of application, however, Arthur’s logging overhead
was at most 4%, and its log size less than 5 MB.

8.2 Replay Performance
At replay time, Arthur can often run faster than the orig-
inal program thanks to selective replay and in-memory
caching. Figure 9 shows the running times of various
queries when debugging the PageRank program. Query 1
counts the number of articles whose PageRank in itera-
tion 3 is greater than a threshold. Arthur only needs to
run the first three iterations to answer the query, so it runs
faster than the original program. Next, Query 2 calculates
the average PageRank in the third iteration, and Query 3
sample the PageRank of ten articles. These queries reuse
the same dataset as Query 1, so they benefit from in-
memory caching. Finally, rerunning a single task locally
was fast compared to the original program.

We also benchmarked the performance of forward and
backward record tracing during replay of the PageRank
application. Forward tracing was 1.48× slower than the
original program, while backward tracing with integer
set tags was 5.52× slower. The large slowdown for
backward tracing was due to diffusion of tags, as de-
scribed in Section 5.3. Both versions correctly identified
the records that an input depended on (e.g., in tracing
through three iterations of PageRank, we find neighbours
at most three links away). We also tested backward trac-
ing with Bloom filter tags. This reduced the slowdown
to 3.09× the original program due to the more compact
size of the Bloom filter representation, but caused about

30% of records in the output to be erroneously tagged.
The actual performance ratio and error rate depends on
the size of Bloom filter used.

8.3 Applicability
Though Arthur is focused towards debugging determin-
istic problems, we have observed these to be more com-
mon than nondeterministic errors for complex distributed
programs due to the fact that, like MapReduce and
Dryad, Spark requires transformations to be determinis-
tic. To illustrate the kinds of errors that Arthur can de-
tect, we describe its applicability to three deterministic
errors: task failures, incorrect output, and performance
problems. We also describe Arthur’s ability to detect un-
intended nondeterminism through checksumming on a
real bug from Conviva, as well as its support for load-
ing Hadoop traces on a pre-existing bug in Mahout.

Deterministic Task Failures As an example of a de-
terministic task failure, we injected an input processing
bug into our Wikipedia PageRank program. This pro-
gram extracts the links from each article by parsing its
XML representation and searching the parse tree for link
elements. Certain tasks were consistently throwing XML
parsing exceptions, so we used Arthur to search the event
log for failing tasks. We reran one of the tasks in a con-
ventional debugger and found that the culprit records
contained \N in place of the article’s XML. It turned out
that our Wikipedia dump used this string to represent
an empty article, so we fixed the bug by adding error-
handling code for that case.

Incorrect Output As an example of incorrect output,
Carat, a real Spark program for processing time series of
devices’ power usage, contained a bug causing the out-
put to contain nonsensical negative values for power us-
age. We used Arthur to inject injecting assertions at every
stage and then replayed the program. Arthur detected the
assertion failures immediately after the location of the
bug and we were able to halt the program early, avoid-
ing the inconvenience of rerunning the program in its en-
tirety.

Deterministic Performance Problems We debugged
Monarch [22], a real Spark program that used logistic
regression to classify spam status updates. The program
was running much more slowly than expected, and we
observed that a few straggler tasks were consistently fin-
ishing last, tens of seconds later than the typical task. We
recorded the task IDs that appeared to be stragglers and,
once the program had finished, we loaded its trace into
Arthur and reran the tasks locally under JDB. Examining

8



the input partition to the task revealed that it contained
several very large feature records, identifying partition
skew as the source of the problem. We were able to re-
produce the problem because data flow frameworks typ-
ically sharded data into partitions deterministically.

Unintended Nondeterminism We used Arthur to de-
tect an bug arising from unintended nondeterminism at
Conviva, a video analytics company. An analytics query
intended to operate on new records that had arrived in the
last few minutes was performing the filter by comparing
record timestamps against the current system time from
within the query, as in the following example:

records.filter((System.currentTime() - _.time)
< INTERVAL)

When we used Arthur to replay the query, we re-
ceived checksum mismatch warnings because the time
had changed from the original execution, and the query
now matched fewer records. Examining the operator that
triggered the warnings revealed the bug, and we fixed the
bug by computing the time in the driver program instead
of in the operator, so that the reference time would re-
main the same across executions of the task:

val now = System.currentTime()

records.filter((now - _.time) < INTERVAL)

Hadoop Jobs To demonstrate Arthur’s support for
loading Hadoop job traces, we chose a pre-existing bug
in Mahout [2], a Hadoop-based machine learning library.
We reproduced the bug, MAHOUT-363, in Arthur. This
bug involved a NullPointerException due to a logic error
in the map code within Mahout. We were able to load the
affected Hadoop job into Arthur, identify the map task
causing the error, and rerun and step through the task lo-
cally until the NullPointerException. Inspecting the task
code and state in JDB confirmed that the exception was
due to the Mahout Cache’s failure to handle a null feature
vector.

9 Discussion

Arthur can perform detailed analysis of job executions
with nearly zero runtime overhead by leveraging the de-
terminism and structure of modern data-parallel applica-
tions. While the core idea behind Arthur is simple, we
showed that it efficiently supports a wide range of analy-
ses, which can be sped up by only replaying the relevant
parts of the job. We believe that Arthur’s approach is im-
portant for two reasons. First, because the deterministic
data flow model we exploit was primarily adopted for
fault tolerance, we believe that it will remain present not
only in today’s frameworks (e.g., MapReduce, Dryad,

Spark), but in future ones as well. Indeed, it is interesting
that not only the determinism itself, but also the decom-
position of jobs into small tasks, is used to speed up re-
covery on failure (by minimizing the work redone), and
both elements directly speed up selective replay. Second,
because of the intrinsically high hardware cost of big data
computations, any instrumentation at runtime is expen-
sive, so replay may be the only effective way to debug
production problems. Therefore, it is important to study
which analyses can be performed this way.

Because of its reliance on replay, Arthur does have
limitations that more invasive debuggers would not. We
discuss some of these next, followed by ways in which
Arthur can be extended. We also discuss how parallel
runtimes could be extended to enable easier replay.

9.1 Limitations
Arthur’s replay approach has several limitations, some of
which can be avoided with more care during execution:

Nondeterministic User Code Arthur cannot replay
bugs where a user’s code (e.g., a map function) is non-
deterministic, although it detects them using checksum-
ming. While users of data flow frameworks are asked
to try to write deterministic code to enable fault recov-
ery, nondeterminism can still be a bug, so it is impor-
tant to be able to fix it. There are two interesting pos-
sible approaches. One is that, once nondeterminism has
been detected, Arthur can try to reproduce nondetermin-
istic behavior (though maybe not the same as the original
run) by simply running multiple copies of the problem-
atic task. It could also run these tasks in a more expensive
replay debugger, such as R2 [13], that can recreate non-
deterministic events once it seems them the first time. A
second approach would be to try to identify nondeter-
ministic code through static analysis (e.g., see whether
particular libraries are being called).2

Inter-Task Interactions Sometimes, bugs are not
caused by a particular task, but by the interaction be-
tween multiple tasks on the same machine. For example,
Hadoop runs a series of tasks in the same Java VM to
amortize startup costs, but if each task leaks memory or
uses a library with global state, the behavior of a task
may depend on which others have run before it. Arthur
cannot guarantee to run the same tasks together at re-
play time (especially if doing selective replay). Auxil-
iary monitoring tools, such as a memory usage monitor,
might be used to detect some of these conditions.

2The most common nondeterministic library that might be called
is a random number generator, but fortunately, runtimes can make that
deterministic by seeding the generator consistently for a given task ID.
For example, Spark does this for its built-in sample operation.

9



Lost Input Files Arthur implicitly assumes that the in-
put files for each job are still available at replay time. For-
tunately, most data warehouses operate in an “append-
only” fashion, and retain files for a long time after inges-
tion. HDFS does not even support random updates.

Communication Order A subtle issue that can hap-
pen in some frameworks is that even though the code in
each task is deterministic, an instance of that task might
fetch input data from other tasks in a nondeterministic
order. For example, in Spark, a reduce task performing
a commutative operation (such as a sum) fetches results
from multiple map tasks in parallel and receives chunks
from different tasks in different orders. Although the op-
eration is, technically, expected to be commutative, some
bugs might manifest only depending on the input order.
In our implementation, we modified Spark to log the or-
der of chunks fetched and use the same order at replay
time. For Hadoop, this problem is not present because
Hadoop always sorts the input to a reduce function.

Nondeterministic Programming Models While
Arthur works for many current frameworks that perform
deterministic computations, such as MapReduce, Dryad,
Spark, Hyracks, and Pregel, it cannot be applied to
programming models that allow nondeterministic,
asynchronous messaging, like MPI or Graphlab [12].

9.2 Extensions
While we have implemented several useful debugging
tools in Arthur, there are other analyses that would be in-
teresting to implement in the model, especially by taking
advantage of the parallelism of the cluster. In addition,
if replay is going to be the cheapest way to debug pro-
duction problems, it would also be interesting to extend
runtime frameworks to better support it.

Parallel Profiling Arthur provides a very effective
foundation to run shadow profiling [19], a technique
where multiple copies of the program are run in paral-
lel with sample profiling to collect highly detailed statis-
tics. Arthur’s model naturally allows doing this for only
a subset of the job (e.g., one task) and feeding the same
input to every copy.

Minimal Example Discovery When a deterministic
bug, such a task crashing, occurs, it would be useful to
automatically “narrow down” on a smaller example that
produces the problem by trying smaller subsets of the
job’s input. This approach is taken in some existing test-
ing tools, such as QuickCheck [7], and clearly benefits
from a parallel search.

Extending Runtimes for Debuggability Some of the
limitations we highlight in the previous section lead di-
rectly to ways to extend parallel runtimes for easier de-
buggability (and, ultimately, more chance of recovering
correctly from faults as well). Some ways that frame-
works could help Arthur include isolating tasks from
each other in separate processes,3 providing hooks to
fetch task inputs in a specific order (as we have done in
Spark), and retaining intermediate data on the filesystem
after job completion (if the framework normally writes
temporary files and then deletes them), and allowing this
to be used as an input during replay to avoid recompu-
tation. Most of these changes would make programs in
these frameworks easier to understand in general.

10 Related Work

Debuggers for Data Flow Frameworks Two recent
systems for debugging parallel data flow programs are
Inspector Gadget [20] and Daphne [16].4

Inspector Gadget is a debugger for programs in the Pig
scripting language that adds instrumentation into the pro-
gram to monitor various properties (e.g., the time spent
in each task, the number of records matching a predicate,
or user-specified assertions). However, this approach re-
quires the user to instrument their job before they run it,
and does not allow the user to rerun a task in a local de-
bugger or to run ad-hoc queries on intermediate datasets
that she did not add instrumentation for in advance. The
runtime overhead from instrumentation can be as high as
70% for some analyses (e.g., data sampling and latency
analysis using tags), making it expensive to run in pro-
duction. In contrast, our replay approach lets users ask
ad-hoc questions about the job after it finished, including
rerunning parts of the job with the same kinds of instru-
mentation available in Inspector Gadget, and additionally
supports local step-through debugging of tasks.

Daphne lets users visualize and debug DryadLINQ
programs. Daphne provides a “job object model" for
viewing the tasks in a job, hooks for attaching a debug-
ger to a remote process on the cluster, and the ability
to replay a task in a single-process debugger as long as
its input data is still available on the cluster. This ap-
proach works in DryadLINQ because all communica-
tion between tasks is through files on disk, but it will
not work in the increasing number of frameworks that
perform computations in memory (such as Pregel [18],
Graphlab [12], or Spark [23]), or for jobs where the in-
termediate data has been deleted. In contrast, Arthur can
recompute the input to any task. In addition, Arthur also
provides checksumming to verify that the user’s code

3One reason this was not done in Hadoop is due to the startup cost
of new Java VMs, but this does not need to be a fundamental limitation.

4“Arthur" was chosen to continue this trend of cartoon characters.

10



Property
Inspector
Gadget

Daphne
liblog/

R2/ODR
Arthur

Job visualization 3 3 7 3

Queries on inter-
mediate data

7 7 7 3

Local task replay 7 3∗ 3 3

Assertions 3 7 3 3

Profiling 3 3 3 3

Record tracing 3 7 7 3

Runtime overhead 5–70%† minimal > 20% < 5%

Table 1: Comparison of Inspector Gadget, Daphne, gen-
eral replay debuggers, and Arthur. Note that (*) Daphne’s
task replay requires that all intermediate data in the job
is saved to disk and available at debug time, and (†) In-
spector Gadget requires instrumenting jobs at runtime,
with varying overhead based on the analysis done.

runs deterministically (an assumption in Daphne) and a
rich set of capabilities that are not present in Daphne be-
cause they require running new code on the cluster, such
as running ad-hoc queries on intermediate datasets.

In general, our implementation provides a superset of
the features in these debuggers, and shows that these fea-
tures can be be implemented “post-facto” using selective
replay of the parts of the job that a particular feature re-
quires. Other features in Arthur, such as the ability to re-
construct intermediate datasets and run ad-hoc queries on
them, or to add new assertions after the job has finished,
are unique in our approach because they require running
new computations on the job’s intermediate data with-
out knowing these computations during the original job’s
execution. Table 1 summarizes the features in Arthur in
comparison to other debuggers.

Record Tracing and Provenance Several projects
have explored how to efficiently capture provenance of
records in data-parallel computations to enable tracing.
RAMP [14] defines and captures provenance for “gener-
alized map and reduce workflows,” which are programs
composed of an acyclic graph of map and reduce steps.
However, because it does this tracing during job execu-
tion, it can add substantial runtime overheads (20–76%).
Newt [8] is a provenance capture and replay framework
for Hadoop and Hyracks that supports capturing record-
level provenance at runtime, and then replaying just the
part of the job that produced a particular output record.
Unlike RAMP, it also handles map operators that work
on a stream, by looking at the interleaving of records be-
ing read and written to determine which input records
affected an output record. (RAMP assumes that the map
function processes just one record at a time and cannot

maintain state between records.) However, Newt still in-
curs about 14–26% runtime overhead, and it lacks other
debugging functions, such as checking assertions or run-
ning ad-hoc queries on intermediate datasets. Inspector
Gadget [20] supports forward tracing through tag propa-
gation and backward tracing by tagging all input records,
but it again needs to perform this tagging at runtime.

All of these approaches could be used within Arthur to
capture provenance for records in (part of) the job when
recomputing it, while avoiding the runtime overhead in
production. Our current tracing module uses the proper-
ties of Spark and Hadoop operators, as well as a Newt-
like approach for map functions that operate on iterators.

Replay Debuggers Replay debugging for distributed
systems has been extensively studied through systems
such as liblog [11], R2 [13], ODR [3], and DCR [4].
However, these systems are designed to replay general
distributed programs, and thus work by recording all
sources of nondeterminism, including message passing
order across nodes, system calls, and accesses to memory
shared across threads. This results in significant overhead
at runtime (often more than 20%), or even larger slow-
downs at replay time (> 10×) for systems that log fewer
events but infer the order of missing events [3]. In con-
trast, our debugger leverages the structure of datacenter
computing frameworks to deterministically replay tasks.
This approach allows us to catch a large class of logic and
performance bugs, and although we cannot replay some
of the nondeterministic bugs that other systems capture
(e.g., race conditions between threads in the same task),
we can still detect them via checksumming. Our record-
ing overhead is also low enough that event logging can
be turned on by default in production.

11 Conclusion

As cluster programming frameworks are adopted for
more applications, debugging the programs written in
them is increasingly important. This is challenging both
because of the scale of the applications and because of
the cost of the hardware resources involved, which makes
any runtime overhead for debug information expensive.
We have proposed an approach based on selective re-
play that exploits the deterministic nature of computa-
tions in these frameworks to efficiently rerun parts of
the program. We show that this approach enables a rich
set of analyses, including rerunning tasks in a conven-
tional step-through debugger, checking assertions, trac-
ing records forward and back through the computation,
and interactively querying intermediate results. The cost
to log the operations we require is minimal (less than
4%), allowing our recording to be “always on” in produc-

11



tion use. The deterministic operations we leverage are a
crucial element of current programming frameworks be-
cause they enable fault recovery [9], so we believe that
they will remain present in future frameworks, making
our approach applicable there as well.

References

[1] Apache Hadoop. http://hadoop.apache.org.

[2] Apache Mahout. http://mahout.apache.org.

[3] ALTEKAR, G., AND STOICA, I. ODR: output-
deterministic replay for multicore debugging. In
SOSP (2009).

[4] ALTEKAR, G., AND STOICA, I. DCR: Replay-
debugging for the datacenter. Tech. Rep.
UCB/EECS-2010-33, UC Berkeley, 2010.

[5] BORKAR, V., CAREY, M., GROVER, R., ONOSE,
N., AND VERNICA, R. Hyracks: A flexible and
extensible foundation for data-intensive computing.
In ICDE ’11 (2011), pp. 1151–1162.

[6] CHAMBERS, C., RANIWALA, A., PERRY, F.,
ADAMS, S., HENRY, R. R., BRADSHAW, R., AND
WEIZENBAUM, N. FlumeJava: easy, efficient data-
parallel pipelines. In PLDI ’10 (2010), ACM.

[7] CLAESSEN, K., AND HUGHES, J. QuickCheck: a
lightweight tool for random testing of haskell pro-
grams. In ICFP ’00 (2000).

[8] DE, S., LOGOTHETIS, D., AND YOCUM, K. Scal-
able lineage capture for debugging DISC analytics.
OSDI poster session, 2012.

[9] DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-
plified data processing on large clusters. In OSDI
(2004).

[10] GEELS, D., ALTEKAR, G., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Friday: global com-
prehension for distributed replay. In NSDI ’07
(2007), pp. 21–21.

[11] GEELS, D., ALTEKAR, G., SHENKER, S., AND
STOICA, I. Replay debugging for distributed ap-
plications. In USENIX ATC (2006).

[12] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON,
D., AND GUESTRIN, C. PowerGraph: distributed
graph-parallel computation on natural graphs. In
OSDI ’12 (2012).

[13] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z.,
WU, M., KAASHOEK, M. F., AND ZHANG, Z. R2:
an application-level kernel for record and replay. In
OSDI (2008).

[14] IKEDA, R., PARK, H., AND WIDOM, J. Prove-
nance for generalized map and reduce workflows.
In CIDR 2011.

[15] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A.,
AND FETTERLY, D. Dryad: distributed data-
parallel programs from sequential building blocks.
In EuroSys (2007).

[16] JAGANNATH, V., YIN, Z., AND BUDIU, M. Mon-
itoring and debugging DryadLINQ applications
with Daphne. In HIPS (2011).

[17] LIANG, S., AND BRACHA, G. Dynamic class load-
ing in the java virtual machine. In OOPSLA ’98
(1998), pp. 36–44.

[18] MALEWICZ, G., AUSTERN, M. H., BIK, A. J.,
DEHNERT, J. C., HORN, I., LEISER, N., AND
CZAJKOWSKI, G. Pregel: a system for large-scale
graph processing. In SIGMOD (2010).

[19] MOSELEY, T., SHYE, A., REDDI, V. J., GRUN-
WALD, D., AND PERI, R. Shadow profiling: Hid-
ing instrumentation costs with parallelism. In CGO
’07 (2007), pp. 198–208.

[20] OLSTON, C., AND REED, B. Inspector Gadget: a
framework for custom monitoring and debugging
of distributed dataflows. In SIGMOD (2011).

[21] OLSTON, C., REED, B., SRIVASTAVA, U., KU-
MAR, R., AND TOMKINS, A. Pig latin: a not-so-
foreign language for data processing. In SIGMOD
’08, pp. 1099–1110.

[22] THOMAS, K., GRIER, C., MA, J., PAXSON, V.,
AND SONG, D. Design and evaluation of a real-
time URL spam filtering service. In IEEE Sympo-
sium on Security and Privacy (2011).

[23] ZAHARIA, M., CHOWDHURY, M., DAS, T.,
DAVE, A., MA, J., MCCAULEY, M., FRANKLIN,
M., SHENKER, S., AND STOICA, I. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In NSDI (2012).

12


