CloudClustering

Toward an Iterative Data Processing Pattern on the Cloud

Ankur Dave*, Wei Lu†, Jared Jackson†, Roger Barga†

*UC Berkeley
†Microsoft Research
Background

MapReduce and its successors reimplement communication and storage

But cloud services like EC2 and Azure natively provide these utilities

Can we build an efficient distributed application using only the primitives of the cloud?
Design Goals

- Efficient
- Fault tolerant
- Cloud-native
Outline

Windows Azure
K-Means clustering algorithm
CloudClustering architecture
 - Data locality
 - Buddy system
Evaluation
Related work
Outline

Windows Azure

K-Means clustering algorithm

CloudClustering architecture
 – Data locality
 – Buddy system

Evaluation

Related work
K-Means algorithm

Iteratively groups \(n \) points into \(k \) clusters
K-Means algorithm

1. Initialize
2. Partition work
 - Assign points to centroids
 - Compute partial sums
3. Recalculate centroids
4. Points moved?
 - Repeat from 1 if points moved, else stop
Outline

Windows Azure
K-Means clustering algorithm
CloudClustering architecture
 – Data locality
 – Buddy system
Evaluation
Related work
Architecture

Centroids: \{ c_1, ..., c_n \}

Initialize

Partition work

Assign points to centroids

Compute partial sums

Recalculate centroids

Points moved?
Outline

Windows Azure

K-Means clustering algorithm

CloudClustering architecture
 – Data locality
 – Buddy system

Evaluation

Related work
Data locality

Single-queue pattern is naturally fault-tolerant

Problem: Not suitable for iterative computation

Multiple-queue pattern unlocks data locality

Tradeoff: Complicates fault tolerance
Outline

Windows Azure
K-Means clustering algorithm
CloudClustering architecture
 – Data locality
 – Buddy system
Evaluation
Related work
Handling failure

1. Initialize
2. Partition work
 - Assign points to centroids
 - Compute partial sums
 - Recalculate centroids
 - Stall?
3. Points moved?
 - Yes → Buddy system
Buddy system provides distributed fault detection and recovery
Buddy system

Spreading buddies across Azure fault domains provides increased resilience to simultaneous failure
Buddy system

Cascaded failure detection reduces communication and improves resilience
Outline

Windows Azure

K-Means clustering algorithm

CloudClustering architecture
 – Data locality
 – Buddy system

Evaluation

Related work
Evaluation

Time for 1 iteration
Speedup vs. 1 instance

Linear speedup with instance count
Evaluation

Sublinear speedup with instance size
Reason: I/O bandwidth doesn't scale
Outline

Windows Azure
K-Means clustering algorithm
CloudClustering architecture
 – Data locality
 – Buddy system
Evaluation
Related work
Related work

- Existing frameworks (MapReduce, Dryad, Spark, MPI, ...) all support K-Means, but reimplement reliable communication.
- **AzureBlast** built directly on cloud services, but algorithm is not iterative.
Conclusions

- CloudClustering shows that it's possible to build *efficient, resilient applications* using only the common cloud services.
- Multiple-queue pattern unlocks data locality.
- Buddy system provides fault tolerance.