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Abstract

Immutability dramatically simplifies fault tolerance, strag-
gler mitigation, and data consistency and is an essential
part of widely-used distributed batch analytics systems
including MapReduce, Dryad, and Spark. However, these
systems are increasingly being used for new applications
like stream processing and incremental analytics, which
often demand fine-grained updates and are seemingly at
odds with the essential assumption of immutability. In
this paper we introduce the persistent adaptive radix tree
(PART), a map data structure designed for in-memory an-
alytics that supports efficient fine-grained updates without
compromising immutability. PART (1) allows applica-
tions to trade off latency for throughput using batching,
(2) supports efficient scans using an optimized memory
layout and periodic compaction, and (3) achieves efficient
fault recovery using incremental checkpoints.

PART outperforms existing persistent data structures
in lookup, update, scan, and memory usage microbench-
marks. Additionally, we evaluate PART in a variety of
distributed applications and show that it improves upon
the performance of state-of-the-art immutable and even
mutable systems by anywhere from 50x to 4 orders of
magnitude.

1 Introduction

The benefits of immutability as a software design principle
are well established: reduced vulnerability to concurrency
bugs, simplified state management [2, 10], and referential
transparency.

Immutability is particularly beneficial for large-scale
distributed systems, where coordination is costly and com-
ponents often fail. One of the primary innovations of
contemporary batch analytics systems, including MapRe-
duce [7], Dryad [12], and Spark [24], is their use of
immutability to greatly simplify and improve fault tol-
erance and straggler mitigation. These systems divide
queries into deterministic tasks that execute independently
in parallel on partitions of immutable input data. In case

of failure, these systems rebuild the lost output by simply
re-executing the tasks on their inputs. Since inputs are
immutable and tasks are independent and deterministic,
re-execution is guaranteed to generate the same result. To
bound recovery time for long-running queries, they period-
ically checkpoint the intermediate results. Since datasets
are never modified, checkpoints can be constructed asyn-
chronously without delaying the query [14]. Immutability
thus enables both efficient task recovery and asynchronous
checkpointing.

However, distributed batch analytics tasks are increas-
ingly transitioning to streaming applications in which
data and their derived statistics are both large and rapidly
changing. In contrast to batch analytics, these new ap-
plications require the ability to efficiently perform sparse
fine-grained updates to very large distributed statistics
in real-time. For example, to analyze trending topics on
Twitter we might want to track the frequency of words
and phrases across all tweets. Each tweet only affects a
very small subset of the frequency statistics. However,
to provide real-time trend predictions we would need to
update this large collection of statistics as tweets arrive.

Systems like Spark Streaming [25] have attempted to
directly support these dynamic applications while pre-
serving immutability. However, by relying on expensive
full data copy-on-write mechanisms these systems have
largely failed to deliver real-time performance. Others
have abandoned the assumption of immutability in favor
of more sophisticated solutions to address the challenges
of consistency and fault tolerance. For example, systems
like Trident [16] and Naiad [17] have explored the use of
durable transaction processing and fine-grained logging
and checkpointing to achieve consistency and fault tol-
erance without assuming immutability. However, these
solutions complicate parallel recovery and sacrifice the
ability to perform multiple unrelated transformations on
the same base dataset.

In this paper we revisit the design of immutable batch
analytics frameworks for real-time stream processing and
challenge the assumption that fine-grained updates are



incompatible with the simplifying requirement of im-
mutability. We build on classic ideas in persistent data
structures [8] which efficiently preserve immutability in
the presence of updates by leveraging fine-grained copy-
on-write to enable substantial data sharing across versions.
In addition to providing efficient updates, persistent data
structures allow any version to be further modified, yield-
ing a branching tree of versions. Persistent data structures
are thus a natural fit for the programming model of batch
analytics systems, particularly those which allow applica-
tions to access previous versions of the dataset.

However, advanced big data use cases add several new
requirements which go beyond the capabilities of existing
persistent data structures. First, these systems need to
support not only low-latency updates but also fast query
processing with high-throughput updates. Consider the
trending tweets application in which users can interactively
query the latest trending terms and phrases. Such an
application must sustain a high volume of updates as
the data comes in, while minimizing latency so users
have access to the freshest state. Second, the system
must support efficient scans (e.g., most popular phrases
beginning with “I’'m with *””) while continuously updating
the data, as such scans are common in data analytics
workloads. Since some queries are long-running it is not
feasible to simply delay updates until a query completes.
Third, since failure is common in large systems, we must
minimize recovery time; otherwise, the user experience
may suffer, or, worse, the application may not be able to
keep up with incoming data. Providing fast recovery time
requires frequent checkpointing, which is challenging.
Fourth, as these systems often deal with spatiotemporal
data, they must support efficient range queries.

In this paper we propose the persistent adaptive radix
tree (PART), an immutable in-memory map designed to
address these requirements. PART builds on the adap-
tive radix tree [13], a state-of-the-art in-memory tree
with a high branching factor and adaptively-sized nodes
originally developed for database indexing. To support
persistence PART uses copy-on-write updates, which are
natural for trees since updating an internal node requires
copying only the node and its ancestors. To support fast
updates we introduce lightweight batching with limited
intra-batch mutability, allowing applications to trade off
latency (for which hundreds of milliseconds are often
acceptable) for throughput by increasing the batch size.
To support efficient scans, we add to PART an LSM [19]
inspired scan-optimized memory layout with periodic
compaction. Finally, to support frequent checkpoints we
leverage the design of PART to introduce an incremental
checkpointing scheme that reduces checkpoint size while
minimizing runtime overhead and recovery cost.

We compare the design of PART to highly optimized
mutable data structures with support for point queries and

range queries. While persistent data structures are unlikely
to achieve throughput parity with the most optimized
mutable data structures, by applying low-latency batching
PART can achieve update throughput within a factor of 2 of
a mutable hash table, while retaining all the advantages of
immutability. Its optimized memory layout brings PART
within a factor of 2 of B-tree scan performance and within
a factor of 2 of optimal space usage. In single-threaded
performance and space usage, it outperforms the Ctrie [20],
a competing persistent data structure. Additionally, PART
exploits the radix tree structure to offer efficient union,
intersection, and range scan operations.

We used the PART data structure to add support for ef-
ficient fine-grained updates, key-based lookup, and range
scans in the Apache Spark immutable batch analytics sys-
tem [24]. Our implementation of PART in Apache Spark
automatically garbage collects unreachable versions, and
leverages the design of PART to enable fast incremental
checkpointing with reduced storage overhead.

We evaluate the performance improvements of Apache
Spark with PART relative to widely used distributed an-
alytics frameworks. PART enables the Apache Spark
Streaming API to run over 4 orders of magnitude faster
while preserving all the benefits of immutability. Com-
pared to Cassandra, which is designed for fine-grained
updates and exploits mutation, PART is 50x faster. Finally,
for machine learning applications we find that Apache
Spark with PART is able to outperform the standard pa-
rameter server [15] by exploiting the short feature ids and
skewed update distribution common in real-world data.

In summary, the contributions of this paper are:

1. The persistent adaptive radix tree (PART), an im-
mutable in-memory map designed to support efficient
fine-grained updates within analytics systems.

2. A set of techniques that allow PART to (1) trade off
latency for throughput, (2) support efficient scans,
and (3) achieve low-overhead fault recovery.

3. A distributed key-value store based on PART and
Spark that outperforms widely-used distributed
streaming systems.

2 Immutability vs. Efficient Small Updates

Parallel computing systems that use a dataflow program-
ming model (MapReduce [7], Dryad [12], Spark [24],
Hyracks [5], Pig [18], FlumeJava [6], and others), al-
low users to build and manipulate parallel collections
of records, which we refer to as datasets. Users ma-
nipulate these datasets through data-parallel abstractions
composed of basic operators such as the map, reduce,
and filter. These operators are then executed broken into
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Figure 1: Example task dependency graph. Tall boxes repre-
sent datasets, while filled boxes represent partitions of a dataset,
which are computed in parallel by different tasks.
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Figure 2: Straggler mitigation. Most tasks complete quickly,
but Task 4 is slow (e.g., due to server overload). After a delay,
Spark schedules a duplicate copy of the slow task on a different
machine. If it finishes sooner than the original task, its result is
used.

tasks that execute concurrently across the cluster in batch
analytics systems. Each task operates independently on
its input records. For example, a map task would run a
user function on each element of its input to produce a cor-
responding output record. Figure 1 shows a dependency
graph for a simple batch program and its constituent tasks.
In the remainder of this section we will use Spark as a
motivating example of a batch analytics system.

Like other distributed batch analytics systems, Spark
provides mechanisms for fault recovery and straggler
mitigation. In fault recovery, Spark uses the dependency
graph between tasks to recompute data partitions lost after
a failure. If multiple partitions were lost, they can be
recomputed in parallel across the cluster. Spark refers to
the distributed dataset along with its dependency graph
as a resilient distributed dataset (RDD). With straggler
mitigation, the system speculatively launches a duplicate
copy of a slow-running task and then uses the output of the
task that finishes first, while killing the other one. Figure 2
shows an example of straggler mitigation.

In order to provide these features, batch analytics sys-
tems require tasks to be idempotent: repeated executions
of the same task must lead to the same result. To ensure
a task’s idempotence, these frameworks assume (1) the
task’s inputs are immutable, and (2) the task’s execution
is deterministic. To achieve deterministic execution, tasks
are typically single threaded, and to preserve immutability
of datasets, tasks must respect copy-on-write semantics
by copying (cloning) a dataset before updating it.

Cloning a dataset works well for updates that involve a
large fraction of the dataset, which is the case for many

analytics workloads today. In those cases, the fixed cost
of copy is amortized across the many updates.

However, batch analytics systems are increasingly being
used for applications that require incremental behavior
such as streaming aggregation and incremental algorithms.
This broader adoption is due to the flexibility, scalabil-
ity, and fault tolerance that these systems provide along
with the opportunity to apply existing analytics code to
new applications. Unifying batch and incremental analyt-
ics within the same system simplifies development and
deployment, avoids overheads due to data transfer and
re-encoding, and allows mixing multiple programming
models to provide increased expressivity.

Unfortunately, because incremental applications require
sparse, fine-grained updates, they are often difficult to im-
plement and perform poorly in distributed batch analytics
systems. For example, many web services today want
to update their user table every few seconds to maintain
up-to-date statistics. However, the set of users that are
active over a time interval is typically much lower than
the total number of users, and thus only a small frac-
tion of entries in the user table are modified. For these
cases the overhead of cloning the entire dataset can be
prohibitive, limiting the scalability of systems like Spark
Streaming [25] that try to support these workloads while
using cloning to ensure immutability.

While there are other techniques that support efficient
fine-grained updates, such as using mutable data structures
or database systems, they come with significant drawbacks.
In-place updating a mutable dataset is fast but violates the
requirements of the fault tolerance model. Task failures
may trivially corrupt the state, preserving the old values
for some keys but updating values for others.

Alternatively, one might rely on a transactional database
that supports atomic batched writes, whether local and
checkpointed (e.g., LevelDB) or external and replicated
(e.g., Cassandra). Storm’s Trident layer [16] uses this
approach, and streaming systems including Naiad [17]
use logging and checkpointing to implement similar re-
covery mechanisms. However, this restricts the ability
to express complex tasks that perform multiple unrelated
transformations on a snapshot of the data. This ability can
be recovered by creating a consistent database snapshot
before each such transformation, but such snapshots incur
high overhead in modern databases and are not optimized
for bulk scans. Additionally, parallel recovery is greatly
complicated in the presence of mutable state.

As a result, existing systems present a seem-
ingly inescapable tension between the assumption of
immutability—essential for fault tolerance, straggler mit-
igation, and simplicity—and the desire to support the
high-throughput fine-grained updates demanded by many
new streaming and incremental applications. However, in



the next section we demonstrate that by leveraging small
tradeoffs in latency and storage overhead and introducing
the right data structures we can achieve high-throughput
fine-grained updates that preserve immutability.

3 Persistent Adaptive Radix Trees (PART)

‘We now introduce our persistent map data structure, the
persistent adaptive radix tree (PART). We first describe
the adaptive radix tree, the ephemeral data structure it
is based on. We then describe how we added efficient
persistence to the adaptive radix tree by exploiting its tree
structure and using batched updates, while retaining good
scan performance using an optimized memory layout and
automatic compaction. Finally, we demonstrate PART’s
efficiency using microbenchmarks.

3.1 Background on Adaptive Radix Trees

Radix trees (also known as tries) represent key-value data
by storing the value for a particular key at the position
in the tree corresponding to the sequence of bits in the
key. A radix tree with branching factor 2° is implemented
by storing an array of 2° pointers at each node, enabling
traversal by following the pointer at the offset correspond-
ing to the relevant s bits of the key. Additionally, radix
trees typically use path compression, in which chains
(sequences of nodes with only one child) are compressed
into a single node to avoid unnecessary indirection.

Radix trees offer several benefits compared to other
data structures such as hash tables and binary search trees.

1. Unlike hash tables, radix trees store keys in sorted
order, enabling range scans using in-order traversal.

2. Compared to binary search trees, radix trees offer
superior asymptotic performance by exploiting the
key structure. Each comparison in a binary search
tree provides only one bit of information and reduces
the key space by up to a factor of 2, while a radix
tree with s > 1 can eliminate far more keys at each
node. As a result, for keys of length &, operations in
a binary search tree have complexity O(k1gn), while
operations in a radix tree have complexity O (k).

3. Radix trees support efficient union and intersection
operations, because they enable large numbers of
keys to be eliminated based on their prefix structure.

4. Radix trees require no rehashing or rebalancing, so
insertion performance is much more predictable than
for a hash table or a self-balancing binary search tree.

The adaptive radix tree [13] is a radix tree with a
branching factor of 256. In addition to reducing the tree
height, this choice of branching factor simplifies tree

operations, because each node may consider the key one
byte at a time without need for bit shifting or masking.
However, such a large branching factor would naively
result in excessive space usage because, for a sparse tree,
most child pointers at each node would be null.

The key idea of the adaptive radix tree is to reduce
space usage by compressing nodes based on their sparsity,
while keeping traversal time to a minimum by carefully
choosing the representation of compressed nodes. To this
end, the adaptive radix tree introduces four node types
corresponding to different levels of sparsity. The number
of node types is chosen to balance space usage against the
frequency of node replacements when insertions or dele-
tions change the sparsity. Note that nodes with only one
non-null child out of 256 possible children are eliminated
by path compression.

1. Nodes with up to 4 non-null children are stored
using an array of 4 key fragments, each key fragment
occupying a byte, and a parallel array of 4 child
pointers. Key lookup is implemented by linearly
searching the first array for the relevant byte of
the key, then retrieving the child pointer from the
corresponding position in the second array.

2. Nodes with 5 to 16 non-null children are stored using
two 16-element parallel arrays as before. Because
the 16-byte key fragment array fits into a 128-bit
SIMD register, vector instructions can be used for
key lookup by comparing the relevant byte of the key
to all 16 stored key fragments in parallel rather than
incurring the cost of a linear or binary search.

3. Nodes with 17 to 48 non-null children are stored
using a 256-element key fragment array and an array
of 48 child pointers. Unlike the smaller node types,
these arrays are not parallel; instead, the key fragment
array is addressed by the key fragment and stores a
6-bit index into the child pointer array. Key lookup
is implemented by accessing the key fragment array
at the offset corresponding to the relevant byte of
the key, then using the stored value to index into the
child pointer array. This avoids an expensive scan in
favor of two array accesses.

4. Nodes with 49 to 256 non-null children are simply
stored using an array of 256 child pointers indexed
by the relevant byte of the key.

3.2 Persistence

Although adaptive radix trees provide indexing, range
scans, and efficient fine-grained updates, they do so
through in-place mutation. To preserve immutability
we turn to a central technique in the design of persistent
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Figure 3: Path copying. Updates to an immutable tree involve

copying a subset of the nodes and returning a new root reflecting
the change. The old root remains valid until garbage-collected.

data structures [8]. With each update, a persistent data
structure returns a new version which reflects any changes
while sharing substantial portions of the internal repre-
sentation with the unmodified previous version. Both the
original and updated versions may go on to be further
modified, yielding a branching history of versions.

Because modifications to nodes in adaptive radix trees
only affect the O (log,s¢ 1) ancestors of that node, they can
be efficiently transformed into persistent data structures
using a technique known as path copying. Path copying
(alsoreferred to as shadowing), as the name implies, copies
the path between the modified node and the root while
preserving the remainder of the tree. More specifically,
when an element is modified, we allocate a copy of the
node containing the element to be modified, make the
modification in the new copy, and repeated the procedure
for all ancestors. Figure 3 shows how path copying may be
used to update a leaf node without in-place modification.
We call this efficient persistent data structure the persistent
adaptive radix tree (PART).

We implemented a highly optimized version of PART
using just 950 lines of C++. In addition to path copying,
each tree node maintains a reference count so expired ver-
sions may be removed even while new versions reference
parts of their data. We chose reference counting over trac-
ing garbage collection to provide predictable performance;
Figure 4 shows the impact of garbage collection pauses on
a Java reimplementation of PART. Additionally, because
internal nodes have just four possible sizes, we use object
pools to reduce allocation overhead and control memory
fragmentation.

We next discuss an optimization to PART when not
all previous versions are needed. In Section 3.6 we will
see that this optimization mitigates the overhead of path
copying and in some cases allows PART to match the
performance of in-place mutation.

3.3 Batched Updates

Compared to in-place mutation, path copying in PART
incurs overhead for modifications because each element
modification additionally requires allocating new nodes
proportional to the tree height. However, this overhead
can be reduced when not all previous versions are needed.
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Figure 5: In-place optimization for updates. At time 71, a
dataset has two versions v; and v, that share some structure. At
time 75, version v, is updated, creating v3. Since the affected
node is referenced only by v, which will be discarded after the
update, path copying (lower left) is equivalent to an in-place
update (lower right).

In particular, updates to a version that will immediately
be discarded can be made in place when they would
not affect any other versions. For example, suppose an
application has two versions of a dictionary v; and v,, and
it applies an update to v, forming v3. If v, is subsequently
never referenced, and the update applies only to tree nodes
referenced by v,, not those shared with v, then the update
can be implemented as an in-place mutation to the nodes
of v,. Figure 5 illustrates this scenario.

We expose this optimization to users of PART by pro-
viding a snapshot operation as well as an in-place update
operation. Updates that must preserve the existing version
are performed by calling snapshot followed by update,
while updates that may overwrite the existing version are
performed simply by calling update.

This optimization is implemented using the existing
reference counts for each tree node. The snapshot opera-
tion clones the root and increments the reference counts
of each of its children. A call to update traverses the tree
to find the appropriate leaf and examines the reference
counts of each node on the path from the root to the leaf.



Any node with a reference count greater than 1 is unsafe to
update in place, so it and its descendants must be copied
to perform the update. However, nodes on the path from
the root to the first such node are only referenced by the
current version and can be safely modified.

As a result, two updates to the same node without
a snapshot in between only require copying the node
once. When snapshots are infrequent this allows update
performance to approach the performance of in-place
mutation despite maintaining two versions, because many
updated nodes have already been updated since the last
snapshot. Also, for non-uniform access distributions,
frequently-updated elements will only be copied once and
then can be updated in place.

3.4 Node Allocation and Compaction

Implementing updates using path copying and batching
enables efficient updates while maintaining immutability,
but seems to come at the expense of scan performance be-
cause of three challenges. First, a naive tree construction
strategy will likely allocate nodes in a suboptimal order
and with high fragmentation, especially under memory
pressure. Second, as versions are created and deleted, frag-
mentation will worsen because shared nodes will become
increasingly scattered across memory. Third, PART’s tree
structure inherently introduces overhead compared to a
sequential array scan due to the space overhead of the
internal tree nodes and the traversal overhead of following
pointers from one node to the next.

In this section we address the first and second chal-
lenges by optimizing PART’s node allocation strategy and
introducing periodic node compaction.

Node allocation. We use a custom memory pool al-
locator for PART that allocates new nodes of each type
contiguously and in traversal order when possible. In par-
ticular, leaves are allocated in sorted order to improve scan
performance. (However, due to the possibility of updates
we must still traverse internal nodes.) When creating a
derived version, we allocate its new nodes contiguously
but maintain backward references to unchanged nodes
from previous versions.

Compaction. When a version is deleted, there is an op-
portunity to improve scan performance for the remaining
versions by regaining a contiguous layout using com-
paction. In compaction, nodes are rearranged to optimize
scan performance and referring pointers are updated.

Compaction is triggered automatically during idle time.
It operates incrementally and is interrupted if a task ar-
rives to avoid delaying latency-sensitive jobs. Each PART
instance maintains metadata used to determine whether
or not to run compaction and what layout compaction
should create. The metadata contains a version history
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Figure 6: Compaction. (a) The nodes of versions a, b, and ¢
are colored by version, with shared nodes in mixed color. Root
nodes are shown as circles and leaves as squares. (b) The nodes
are laid out in memory in creation order. (c) Version a is deleted
but shared nodes are preserved. (d) However, this results in a
fragmented memory layout. () Compaction reorders b and c to
be contiguous.

graph where each connected component represents an
independent set of PART versions. For each connected
component in the history graph, versions with more ele-
ments are prioritized for contiguous storage over versions
with fewer elements. For example, consider the following
versions, illustrated in Figure 6:

val a = PART(3 keys)

val b = a.update(l key)
val ¢ = a.update(2 keys)
// Later:

a.destroy ()

Initially the versions are laid out in creation order, with
a fully contiguous and b and c containing backward refer-
ences to a. However, the last line destroys a. Afterwards,
when compaction occurs it will reorganize both b and ¢
to be contiguous.

Impact on scan performance. Figure 7a shows the
results of custom node allocation on scan performance in a
PART instance with 10 million pairs of 4-byte keys and 4-
byte values. Compared to using the default C++ allocator,
our allocator results in 60% better scan performance. The
remaining overhead compared to a sequential array scan
is due to the space and traversal overhead from PART’s
internal nodes, which are necessary to support updates.

3.5 Key Space Transformations

A crucial weakness of radix trees is their vulnerability
to long keys, which can degrade performance severely
by increasing tree depth and forcing deep traversals. As
discussed in Section 3.1, PART largely mitigates this
problem using path compression to eliminate unnecessary
indirection (in addition to the constant-factor reduction in
tree depth from choosing a high branching factor). How-
ever, certain key distributions seen when events cluster
together can render path compression ineffective.
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Inspired by the HAMT [3], we provide the option of
applying a randomly selected hash function in this case
to minimize the probability of such a distribution, though
this comes at the expense of in-order traversals. Figure 7b
shows that this optimization provides a 2.2x speedup
when evaluated with 32-byte keys chosen from a highly
skewed distribution.

3.6 Microbenchmarks

The optimizations to PART in Sections 3.3 to 3.5 aimed to
mitigate its weaknesses in scan and update performance.
Figure 8 summarizes the performance impact of these
optimizations.

In this section we now demonstrate that, with these op-
timizations, PART’s performance and memory efficiency
are competitive with standard mutable data structures. We
compare PART against a mutable hash table implemented
using chaining (STL’s unordered_map), a mutable red-
black tree (STL's map), and an in-memory B-tree (Google’s
cpp-btree). While faster implementations exist for some
of these data structures, the implementations we chose
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Figure 8: Summary of optimizations.

are widely used and well-understood. We aim for perfor-
mance comparable to these while providing persistence
rather than attempting to match the speed of the fastest
available mutable data structures.

We additionally aim to show that PART is better-suited
for distributed analytics than existing persistent data struc-
tures. To this end we compare against the Ctrie [20], a
JVM-based variant of the HAMT supporting concurrent
read-only snapshots.

We loaded each data structure with 10 million uniform-
random 4-byte keys. We conducted two sets of experi-
ments with different value sizes: Figure 9 uses 4-byte
values, while Figure 10 uses 1024-byte values. Error bars
denote standard deviations and are shown on every point,
though they may be too small to see.

Figures 9a and 10a show that PART matches the hash
table and outperforms the other data structures in random
lookup performance. Note that all lookups in this mi-
crobenchmark result in success, which is the worst case
for PART because each lookup must traverse the whole
tree. For lookups resulting in failure, PART’s radix tree
structure enables early termination, and the first few levels
of the tree are likely to be present in cache. As a result,
for lookups resulting in failure, PART is 40% faster than
the hash table (not shown). Figures 9b and 10b show that
PART is comparable to the hash table and outperforms
the Ctrie and red-black tree in scan performance. PART
benefits from node compaction, which places many leaf
nodes in sequential order. The B-tree is 2x faster than
PART for scans because its large, densely-filled leaf nodes
minimize pointer lookups when scanning.

We measure the performance of random inserts in
Figures 9c and 10c. As an upper bound, we consider in-
place inserts in the chart on the right. When performing all
updates in place, PART is effectively a reimplementation
of ART. In this case it is able to outperform the mutable
hash table by a factor of 2, largely due to the hash table’s
open addressing and periodic need for rehashing.

On the left side of Figures 9c and 10c we plot the
performance of each data structure with persistence for
varying snapshot intervals. For the hash table, red-black
tree, and B-tree, we implemented persistence naively
by cloning the data structure before applying updates,
while for PART we used the snapshot-based persistence
of Sections 3.2 and 3.3, and for the Ctrie we used its
read-only snapshot capability. With 4-byte values and a
snapshot interval of 1, corresponding to creating a new
version for every insert, PART provides 127,000 inserts
per second, the Ctrie provides 83,000 inserts per second,
and the other data structures provide less than 1 insert per
second due to the overhead of cloning. At a more realistic
snapshot interval of 1000, PART provides 256,000 inserts
per second, the Ctrie provides 136,000 inserts per second,



and the other data structures provide less than 300. As the
snapshot interval approaches the data structure size, later
inserts can be performed in place and PART’s performance
approaches the mutable case. For 1024-byte values, the
cost of operating on the values begins to dominate. As
in Figure 4, the Ctrie performs better on average than the
C++-based data structures at the cost of high variance due
to unpredictable garbage collection.

Finally, we measured memory usage in Figures 9d
and 10d. For data structures implemented in C++, we
report the process resident set size after loading each data
structure with 10 million pairs, while for the JVM-based
Ctrie, we calculate the data structure size by traversing
its in-memory representation using reflection. As a lower
bound, we also measured the memory usage of two parallel
arrays for keys and values.

4 System

In this section we describe our implementation of a dis-
tributed dictionary in Spark using PART. Our dictionary
uses the standard hash and range partitioning techniques
for distributed storage; elements are assigned to partitions
by hash or range partitioning their keys.

At each partition, elements are stored off-heap and
managed by an instance of our C++ implementation of
PART. When an RDD is no longer used at the driver,
Spark notifies the PART process at each partition using
JNI, allowing it to recursively free nodes not referenced
by other PART data structures within the same partition.

We reimplement many standard Spark operations such
as filter, and join to take advantage of the capabilities
of PART. For example, filter can avoid copying the leaf
nodes containing the elements, instead filtering the tree
structure but reusing the pointers to the remaining leaves.
Other Spark operations such as map, foreach, and group-
by are implemented by falling back to the standard Spark
implementation, which only requires PART to expose
an iterator to traverse the elements sequentially through
JNI and leverages the optimizations for bulk scan support
introduced in PART.

We augment the Spark RDD interface by adding support
for efficient key lookups, updates, insertions, and dele-
tions, as well as unions, intersections, and joins. These
operations were previously emulated using full dataset
scans; we use PART to implement them more efficiently.
Lookups, updates, insertions, and deletions are imple-
mented as described in Section 3. When two RDDs are
co-partitioned (i.e., they share a partitioning function),
unions, intersections, and joins can be implemented using
local operations at each partition. Unions and intersections
exploit the radix tree structure, making them particularly
efficient for disjoint key sets. Joins are implemented as
coordinated scans over the two data structures at each
partition.

4.1 Incremental Checkpointing

Spark supports fault recovery for batch and streaming
applications by logging the input file or stream as well
as any operations needed to construct the application’s
datasets from the input. Using this scheme, log space
and recovery time for streaming and iterative applications
would grow unboundedly as the input stream or number
of iterations grows over time. Spark therefore periodically
checkpoints all active datasets, bounding recovery time by
allowing it to use the checkpoint rather than the log for all
changes up to the time of the checkpoint. Checkpointing
is generally a very expensive operation because it involves
writing the entirety of each active dataset to stable storage,
which is usually replicated for fault tolerance.

Checkpointing each dataset in full is required for appli-
cations where most records change from one checkpoint
to the next. However, in workloads where records change
infrequently, this can be inefficient. We use PART to
reduce the checkpoint data size when parts of the key
space have not changed since the last checkpoint. If an
entire subtree is the same since the last checkpoint, which
can occur for skewed update distributions, we simply refer
to it in the old checkpoint rather than writing it out again.

Checkpointing with hard links. We implement tree
checkpointing by (1) taking a snapshot for consistency,
(2) partitioning the tree coarsely into subtrees, and (3)
storing each subtree as a different file, representing inter-
page pointers as file identifiers. The root node of each
subtree in memory holds the file identifier for its subtree
on disk, and in-place updates clear these file identifiers.
This way, any subtree with a file identifier is guaranteed
to be checkpointed to its latest version, allowing future
checkpoints to avoid duplicating these subtrees.

Instead, future checkpoints represent unchanged sub-
trees using hard links to their original files. Since check-
point files from different trees are stored in different
directories, checkpoint cleanup is a simple matter of
deleting the appropriate directory. The hard links ensure
that subtrees still referenced by new checkpoints are not
deleted.

Tree partitioning. Due to path copying, each update
to a PART node creates new versions of all of the node’s
ancestors up to the root. Nodes higher up in the tree are
thus more likely to change from one snapshot to the next,
and the root always changes between versions. However,
in the above coarse file-based scheme, a file containing
even a single changed node must be copied in full. We
therefore desire a tree partitioning scheme that minimizes
the number of changed files per update.

Our solution is a tree partitioning that concentrates the
most frequently-changed nodes (those close to the root)
into a single file, while dividing infrequently-changed
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Figure 10: Data structure comparison for 10 million pairs of 4-byte string keys and 1024-byte string values.

nodes (the subtrees closest to the leaves) into multiple
files. We use a depth threshold as a heuristic to sepa-
rate frequently-changed nodes from infrequently-changed
nodes. Figure 11 illustrates this partitioning scheme.

Efficiency experiment. We measured the effectiveness
of this coarse-grained incremental checkpointing scheme
by loading a PART instance with 10 million key-value
pairs and creating an initial checkpoint, then measuring
the size of an incremental checkpoint after a number of
random writes.

Figure 12 plots the size of the incremental checkpoint for
varying numbers of uniform and Zipf-distributed writes.
For small numbers of uniform writes, incremental check-
pointing reduces checkpoint size by up to 3 orders of
magnitude. It provides space savings up to 1 write for
approximately 100 existing elements (i.e., 1% sparsity).
Due to their skewed update pattern, Zipf-distributed writes
continue to see space savings from incremental check-
pointing even when the number of writes exceeds the
number of existing elements.

Recovery from checkpoint. Finally, recovering a
dataset from checkpoint is straightforward: we read each
checkpoint file starting at the root, recursively load each

frequently
changing

infrequently
changing

Figure 11: Tree partitioning: minimize number of changed
files by segregating frequently-changed nodes from infrequently-
changed nodes.

node’s children by following a link within the same file
or opening a new file, and set the child pointers to the
memory addresses of the newly-loaded children.

4.2 Concurrency

Concurrent operations on a single partition occur in Spark
in two situations. First, multiple jobs may be launched
against a single RDD using concurrency at the driver.
This typically occurs when multiple users share a driver
using a job server to access shared in-memory datasets.
Second, RDDs may be checkpointed concurrently in
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the background, avoiding unavailability or a backlog of
streamed input.

A key observation is that these situations only require
support for concurrent snapshots and concurrent reads
to an existing snapshot, not concurrent writes to a new
snapshot. PART therefore supports concurrency simply by
using atomic increment and decrement operations when
updating node reference counts. This ensures concur-
rent snapshots will perform copy-on-write updates for
conflicting nodes.

5 Evaluation

In this section we demonstrate that our PART-based dis-
tributed dictionary offers both stronger versioned seman-
tics and superior performance compared to existing analyt-
ics systems. We implement four distributed applications
using PART and compare them to existing alternatives.

Cluster-based experiments in this section were con-
ducted on Amazon EC2 using 8 r3.2xlarge worker nodes
in March 2015-April 2017. Each node had 8 virtual cores,
61 GB of memory, and a 160 GB SSD. Single-node
experiments were conducted on a machine with a 2 GHz
Intel Core i7 processor and 16 GB of memory.

5.1 Streaming Word Count

Given a stream of 26-character alphanumeric strings uni-
formly distributed over the key space, in streaming word
count we tally the number of occurrences of each key
seen so far using a 64-bit counter. For this experiment we
loaded the 8-node cluster with an initial set of 1 billion
keys, then measured each system’s average throughput
over a stream of 100 million keys.

This workload exhibits a sparse update pattern where
only a small fraction of keys are updated in each timestep.
The sparse workload is intended to model applications
such as a social network where each user maintains profile
statistics (e.g., the user’s tweet count), but where dur-
ing any interval, only a small fraction of users interact
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with the service (e.g., by sending a tweet) and need to
be accessed. We performed the comparison across the
following systems:

1. Our PART-based distributed dictionary, dividing the
input into 100 batches of 1 million tuples each.

A similar implementation using a Ctrie at each parti-
tion instead of PART.

Spark Streaming 1.3.0, a fault-tolerant stream pro-
cessing system, also with 100 batches of 1 million
tuples each.

Cassandra 2.1.3, a distributed database, configured
with a replication factor of 1.

As an upper bound, a per-partition C++ mutable hash
table (STL’s unordered_map). Unlike the other
systems, this does not provide fault tolerance or
access to previous versions.

To ensure that we measured each system’s maximum
throughput, we performed load generation in parallel on
each node for all systems. Each load generator’s output
was constrained to the key range of its partition, ensuring
that none of the systems needed to communicate any data
over the network.

Figure 14a shows the average throughput of these sys-
tems. The mutable hash table provided overall average
throughput of 49 million keys per second on the 8-node
cluster. Our PART-based distributed dictionary provided
overall average throughput of 9.3 million keys per second,
18% the performance of the mutable hash table while
providing fault tolerance and access to previous versions.
The Ctrie-based approach processed 7.5 million keys per
second, a result that was suprisingly close to PART’s due
to the key hashing used by the Ctrie that reduced its tree
depth at the cost of support for range scans. Cassandra
provided overall average throughput of 174K keys per
second. Though we avoided the need for immediate write
visibility (by enabling batching) and network commu-
nication (by disabling replication and using local load
generators), Cassandra was still limited by disk I/O in the
leveled compaction process.

Spark Streaming did not finish but averaged 8,799 keys
per second. This was because it joins the input batch
with the existing aggregates by rehashing both datasets
to form a new dataset, using an approach similar to that
described in Section 2 involving copying the aggregated
state in full and then modifying the clone in place. This
strategy is appropriate for dense aggregation workloads
where each key is likely to be updated in every batch, but
is very inefficient for the sparse workload tested in this
benchmark. Including existing tuples in the throughput
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calculation shows that Spark Streaming was processing
2.7 million total records per second, but almost all of these
were existing records.

Key length and skew. To explore the effect of key
length and distribution skew on the streaming word count
application, we conducted a single-node experiment com-
paring insert performance for PART and the mutable hash
table under varying key lengths (4 byte keys to 32 byte
keys) and Zipf skew parameters (1.0, representing a uni-
form distribution, up to 3.0, a highly skewed distribution).
We did not use any key space transformations for this
experiment. Figure 13 shows that for short keys, increased
skew benefits both data structures due to improved cache
hit rate, but PART benefits more than the hash table (in
fact outperforming it at high levels of skew) because its
sorted layout allows it to benefit from the spatial locality
of reference created by the skew. These results replicate
the trend reported for ART [13]; note that the absolute
numbers are not comparable due to the large difference in
hardware. However, for long keys the reverse trend occurs:
increased skew still benefits the hash table slightly, but
it decreases PART’s performance by a factor of 2. As
explained in Section 3.5, this is because skew for long
keys increases the average tree height by reducing the
opportunities for path compression that would otherwise
occur for isolated keys.

5.2 Time Series Ingestion

In time series ingestion, we load a continuous dense stream
of timestamped values and index them by timestamp.
This is useful for log analysis, where a high volume of
timestamped log entries arrives mostly in order with some
probability of reordering, and most queries involve fixed
or sliding time windows.

We performed this experiment on a single node, ini-
tializing each data structure with 1 million values and
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then measuring the ingestion performance for a further 1
million values in temporal order. We stored timestamps
using the standard 64-bit time_t representation. As an
upper bound, we compared PART to a mutable hash table,
which does not support time windowing but does support
out-of-order arrivals.

Figure 14b shows that, as the batch size increases, PART
outperforms the Ctrie and approaches and exceeds the
performance of the mutable hash table while providing
the benefits of immutability. The fact that larger batch
sizes have better performance makes PART well-suited to
high-utilization streaming, where a failure could increase
the backlog beyond the system’s stability threshold and
prevent the system from ever catching up. Due to batching,
PART’s efficiency scales with the size of the backlog,
reducing the likelihood of a runaway backlog.

Recovery experiment. To demonstrate the impact
of batching on fault recovery, we further simulated a
machine failure in the time series ingestion application.
Figure 15 shows that, when a failure occurs in batch 10
and the system must rerun all 10 previous batches for the
affected partition, batching these updates together speeds
up recovery by more than a factor of 5.

5.3 Parameter Server

We implemented Latent Dirichlet Analysis (LDA), a
topic modeling algorithm, using a parameter server ap-
proach [15] where each word results in an update to a
number of parameters stored in a sparse distributed map.
We used PART to implement this map and we compared it
against a mutable hash table on a synthetic corpus where
words appear with a skewed distribution.

We performed this experiment on a single node, running
20 iterations of LDA over a corpus with 10 million words
and 4-byte parameter ids. For PART, each iteration was
performed using a single batched update; in the distributed
setting this corresponds to a minibatch training approach.
Figure 14c shows that PART performed well on this
algorithm since this workload is well-suited for it due to
the short keys and high update skew. PART outperformed
the hash table and achieved 73% of the performance of a
dense parameter array containing all 232 parameter entries,
in which a parameter update requires only a single array
lookup. This dense approach would be infeasible for larger
parameter spaces, but we include it as an upper bound in
this comparison.

5.4 Historical Experiments on the Netflix
Watch Stream

To motivate immutability and show that PART provides
an end-to-end speedup, we implemented an application
inspired by a real-world problem in maintaining Netflix’s
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movie recommendation system [22]. Netflix trains its rec-
ommendation algorithm on a watch stream recording each
time a user watches or rates a movie. Any proposed change
to the recommendation algorithm must demonstrate im-
proved results in historical experiments comparing it to
existing algorithms on past snapshots of the watch stream.
The candidate algorithm is trained on an old snapshot,
then tested on a newer snapshot where its predictions are
compared with existing algorithms.

We reimplemented a similar pipeline using PART to
update and maintain historical snapshots. We gener-
ate 10 million synthetic movie watch events, uniformly
distributed over 1 hour and 100 million users and Zipf
distributed over 100,000 movies. We maintain a PART
instance mapping each 8-byte user id to a 100-element
vector, and another PART instance mapping 4-byte movie
ids to 100-element vectors. We update these feature collec-
tions by batching the watch events into 5-second intervals.
For each watch event, we make a random update to the
corresponding user and movie feature vectors. We snap-
shot the feature collections every 100 batches. Finally, we
scan the first snapshot 100 times to simulate training a
recommendation algorithm on it, then scan the last one to
simulate comparing predictions with subsequent events.

We compare against taking periodic full snapshots of
copied state (similar to Spark Streaming). Figure 14c
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compares the runtime of these two alternatives when run
on these stages (ingesting and experimentation). PART is
more efficient because it saves space compared to a full
snapshot while providing access to historical versions.

6 Related Work

The capability of persistent data structures to perform
updates without modifying previous versions is similar
to work on versioning in databases. The multiversion
concurrency control (MVCC) capabilities [4] in many
popular databases rely on versioned mutable data struc-
tures such as the log-structured merge tree [19]. However,
techniques used to implement MVCC are often not di-
rectly applicable for the analytics setting because they
assume versions will be short-lived, lasting only for the
duration of the transaction before being reconciled. On the
other hand, versions in the analytics setting are closer to
different views of the same data; versions may persist for
the entire lifetime of an application and multiple versions
may be joined together.

Work in versioned file systems and databases does aim to
address the case of long-lived versions, which are directly
used to provide immutable semantics. Copy-on-write
B-trees are similar to our work and are used to provide
snapshots in ZFS [11], btrfs [21], and CouchDB [1],
among others. The Stratified Doubling Array [23] aims
to improve the performance of copy-on-write B-trees.
However, these solutions focus on data on disk, which
is subject to very different performance tradeoffs than
in-memory data. In particular, PART relies heavily on
adaptive radix trees which leverage low-latency random
access to exploit sparsity and aggressively compress low
fan-out nodes. Additionally, the Stratified Doubling Array
exposes a versioned interface but internally uses mutation
to update data in memory and on disk, requiring locking
to support checkpointing and concurrent reads.



An important motivation for PART is incrementally
iterative algorithms, which make repeated fine-grained
updates to algorithm state. For example, to compute
connected components on a distributed graph, vertices
repeatedly exchange component ids and update their own
membership. Stratosphere [9] and Naiad [17] address
these algorithms using a specialized programming model
based on state mutation for maximum performance. How-
ever, this comes at the expense of simple fault tolerance.
Naiad uses costly synchronous checkpoints for fault tol-
erance, while Stratosphere uses a complex distributed
snapshot protocol. In contrast, PART retains fully asyn-
chronous checkpoints thanks to immutability, and it ad-
ditionally benefits from the space savings of incremental
checkpointing.

7 Conclusion

In this paper we introduced persistent adaptive radix trees
(PART) to enable batch analytics systems to efficiently
support the fine-grained point updates commonly found in
incremental and streaming computation while preserving
immutability and all the benefits it confers. We lever-
aged developments in persistent data structure design to
enable point queries and updates while preserving past
versions with minimal memory overhead. We extended
adaptive radix trees to support the batch ingest and bulk
scans commonly found in batch analytics workloads. Fi-
nally, we enabled asynchronous low-overhead incremental
checkpointing by exploiting the tree structure of PART.
We demonstrated that PART substantially outperforms,
often by orders of magnitude, existing widely adopted
mechanisms to introduce point updates in batch analyt-
ics systems and performs comparably to mutable data
structures while preserving the benefits of immutability.

More generally, we believe that immutability is a bene-
ficial constraint in distributed systems because it improves
programmability for the user and flexibility for the system.
This will increasingly become the case as applications
grow more complex and coordination becomes more ex-
pensive.

Finally, PART was developed in context of the re-
cent movement towards increasing integration between
batch and online analytics at the system level. This trend,
which includes popular new systems such as Spark Stream-
ing [25], Naiad [17], and Flink (formerly Stratosphere) [9],
is driven by the promise of improved convenience, in-
creased scalability, and reduced latency between data and
resulting action.
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